|
EWAH370TZPLB2 |
EWAH440TZPLB2 |
EWAH530TZPLB2 |
EWAH610TZPLB2 |
EWAH690TZPLB2 |
EWAH770TZPLB2 |
Cooling capacity
|
Nom.
|
kW
|
371
|
435
|
532
|
606
|
692
|
779
|
Capacity control
|
Method
|
|
Variable
|
Variable
|
Variable
|
Variable
|
Variable
|
Variable
|
|
Minimum capacity
|
%
|
16.7
|
14.3
|
11.7
|
10
|
10
|
12.8
|
Power input
|
Cooling
|
Nom.
|
kW
|
102
|
121
|
137
|
163
|
186
|
217
|
EER
|
3.62
|
3.58
|
3.86
|
3.7
|
3.72
|
3.58
|
IPLV
|
6.15
|
6.35
|
6.36
|
6.35
|
6.48
|
6.63
|
SEER
|
5.239
|
5.417
|
5.587
|
5.699
|
5.855
|
5.876
|
Dimensions
|
Unit
|
Depth
|
mm
|
7,683
|
9,483
|
7,683
|
8,583
|
9,483
|
11,283
|
|
|
Height
|
mm
|
2,537
|
2,537
|
2,537
|
2,537
|
2,537
|
2,537
|
|
|
Width
|
mm
|
2,258
|
2,258
|
2,258
|
2,258
|
2,258
|
2,258
|
Weight
|
Operation weight
|
kg
|
5,982.4
|
7,023
|
6,656.8
|
7,636.2
|
8,289.4
|
8,661.2
|
|
Unit
|
kg
|
5,741.4
|
6,722
|
6,364.8
|
7,140.2
|
7,804.4
|
8,208.2
|
Casing
|
Colour
|
|
Ivory white
|
Ivory white
|
Ivory white
|
Ivory white
|
Ivory white
|
Ivory white
|
|
Material
|
|
Galvanized and painted steel sheet
|
Galvanized and painted steel sheet
|
Galvanized and painted steel sheet
|
Galvanized and painted steel sheet
|
Galvanized and painted steel sheet
|
Galvanized and painted steel sheet
|
Air heat exchanger
|
Type
|
|
Microchannel
|
Microchannel
|
Microchannel
|
Microchannel
|
Microchannel
|
Microchannel
|
Fan
|
Quantity
|
|
16
|
20
|
16
|
18
|
22
|
24
|
|
Type
|
|
Direct propeller
|
Direct propeller
|
Direct propeller
|
Direct propeller
|
Direct propeller
|
Direct propeller
|
Fan motor
|
Drive
|
|
Brushless
|
Brushless
|
Brushless
|
Brushless
|
Brushless
|
Brushless
|
Compressor
|
Quantity
|
|
2
|
2
|
2
|
2
|
2
|
2
|
|
Type
|
|
Inverter driven single screw compressor
|
Inverter driven single screw compressor
|
Inverter driven single screw compressor
|
Inverter driven single screw compressor
|
Inverter driven single screw compressor
|
Inverter driven single screw compressor
|
|
Starting method
|
|
Inverter driven
|
Inverter driven
|
Inverter driven
|
Inverter driven
|
Inverter driven
|
Inverter driven
|
Operation range
|
Air side
|
Cooling
|
Min.
|
°CDB
|
-18
|
-18
|
-18
|
-18
|
-18
|
-18
|
|
|
|
Max.
|
°CDB
|
55
|
55
|
55
|
55
|
55
|
55
|
|
Water side
|
Evaporator
|
Min.
|
°CDB
|
-8
|
-8
|
-8
|
-8
|
-8
|
-8
|
|
|
|
Max.
|
°CDB
|
18
|
18
|
18
|
18
|
18
|
18
|
Sound power level
|
Cooling
|
Nom.
|
dBA
|
95.48
|
96
|
98.71
|
99.63
|
99.73
|
98.5
|
Sound pressure level
|
Cooling
|
Nom.
|
dBA
|
74.03
|
73.96
|
77.25
|
77.86
|
77.68
|
75.93
|
Refrigerant
|
Type
|
|
R-1234(ze)
|
R-1234(ze)
|
R-1234(ze)
|
R-1234(ze)
|
R-1234(ze)
|
R-1234(ze)
|
|
GWP
|
|
7
|
7
|
7
|
7
|
7
|
7
|
|
Circuits
|
Quantity
|
|
2
|
2
|
2
|
2
|
2
|
2
|
Piping connections
|
Evaporator water inlet/outlet (OD)
|
|
168.3mm
|
168.3mm
|
168.3mm
|
219.1mm
|
219.1mm
|
219.1mm
|
Power supply
|
Phase
|
|
3~
|
3~
|
3~
|
3~
|
3~
|
3~
|
|
Frequency
|
Hz
|
50
|
50
|
50
|
50
|
50
|
50
|
|
Voltage
|
V
|
400
|
400
|
400
|
400
|
400
|
400
|
|
Voltage range
|
Min.
|
%
|
-10
|
-10
|
-10
|
-10
|
-10
|
-10
|
|
|
Max.
|
%
|
10
|
10
|
10
|
10
|
10
|
10
|
Unit
|
Running current
|
Cooling
|
Nom.
|
A
|
175.85
|
205.4
|
233.82
|
272.98
|
316.97
|
364.19
|
|
|
Max
|
A
|
272
|
319
|
350
|
424
|
491
|
536
|
|
Max unit current for wires sizing
|
A
|
298.9
|
351.43
|
384.54
|
466.74
|
540.17
|
589.23
|
Notes
|
(1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0
|
(1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0
|
(1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0
|
(1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0
|
(1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0
|
(1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0
|
|
(2) - The value refers to the pressure drop in the evaporator only
|
(2) - The value refers to the pressure drop in the evaporator only
|
(2) - The value refers to the pressure drop in the evaporator only
|
(2) - The value refers to the pressure drop in the evaporator only
|
(2) - The value refers to the pressure drop in the evaporator only
|
(2) - The value refers to the pressure drop in the evaporator only
|
|
(3) - Sound power level (referred to evaporator 12/7°C, ambient 35°C full load operation) are measured in accordance with ISO 9614 and Eurovent 8/1
|
(3) - Sound power level (referred to evaporator 12/7°C, ambient 35°C full load operation) are measured in accordance with ISO 9614 and Eurovent 8/1
|
(3) - Sound power level (referred to evaporator 12/7°C, ambient 35°C full load operation) are measured in accordance with ISO 9614 and Eurovent 8/1
|
(3) - Sound power level (referred to evaporator 12/7°C, ambient 35°C full load operation) are measured in accordance with ISO 9614 and Eurovent 8/1
|
(3) - Sound power level (referred to evaporator 12/7°C, ambient 35°C full load operation) are measured in accordance with ISO 9614 and Eurovent 8/1
|
(3) - Sound power level (referred to evaporator 12/7°C, ambient 35°C full load operation) are measured in accordance with ISO 9614 and Eurovent 8/1
|
|
(4) - The sound pressure level is measured via a microphone at 1m distance of the unit.
|
(4) - The sound pressure level is measured via a microphone at 1m distance of the unit.
|
(4) - The sound pressure level is measured via a microphone at 1m distance of the unit.
|
(4) - The sound pressure level is measured via a microphone at 1m distance of the unit.
|
(4) - The sound pressure level is measured via a microphone at 1m distance of the unit.
|
(4) - The sound pressure level is measured via a microphone at 1m distance of the unit.
|
|
(5) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition
|
(5) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition
|
(5) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition
|
(5) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition
|
(5) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition
|
(5) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition
|
|
(6) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request.
|
(6) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request.
|
(6) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request.
|
(6) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request.
|
(6) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request.
|
(6) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request.
|
|
(7) - All data refers to the standard unit without options.
|
(7) - All data refers to the standard unit without options.
|
(7) - All data refers to the standard unit without options.
|
(7) - All data refers to the standard unit without options.
|
(7) - All data refers to the standard unit without options.
|
(7) - All data refers to the standard unit without options.
|
|
(8) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%.
|
(8) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%.
|
(8) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%.
|
(8) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%.
|
(8) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%.
|
(8) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%.
|
|
(9) - Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced.
|
(9) - Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced.
|
(9) - Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced.
|
(9) - Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced.
|
(9) - Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced.
|
(9) - Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced.
|
|
(10) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current.
|
(10) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current.
|
(10) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current.
|
(10) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current.
|
(10) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current.
|
(10) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current.
|
|
(11) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current
|
(11) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current
|
(11) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current
|
(11) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current
|
(11) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current
|
(11) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current
|
|
(12) - Maximum unit current for wires sizing is based on minimum allowed voltage.
|
(12) - Maximum unit current for wires sizing is based on minimum allowed voltage.
|
(12) - Maximum unit current for wires sizing is based on minimum allowed voltage.
|
(12) - Maximum unit current for wires sizing is based on minimum allowed voltage.
|
(12) - Maximum unit current for wires sizing is based on minimum allowed voltage.
|
(12) - Maximum unit current for wires sizing is based on minimum allowed voltage.
|
|
(13) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1
|
(13) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1
|
(13) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1
|
(13) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1
|
(13) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1
|
(13) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1
|
|
(14) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book
|
(14) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book
|
(14) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book
|
(14) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book
|
(14) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book
|
(14) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book
|
|
(15) - All data are subject to change without notice. Please refer to the unit nameplate data.
|
(15) - All data are subject to change without notice. Please refer to the unit nameplate data.
|
(15) - All data are subject to change without notice. Please refer to the unit nameplate data.
|
(15) - All data are subject to change without notice. Please refer to the unit nameplate data.
|
(15) - All data are subject to change without notice. Please refer to the unit nameplate data.
|
(15) - All data are subject to change without notice. Please refer to the unit nameplate data.
|
|
(16) - For more details on the operating limits please refer to the Chiller Selection Software (CSS).
|
(16) - For more details on the operating limits please refer to the Chiller Selection Software (CSS).
|
(16) - For more details on the operating limits please refer to the Chiller Selection Software (CSS).
|
(16) - For more details on the operating limits please refer to the Chiller Selection Software (CSS).
|
(16) - For more details on the operating limits please refer to the Chiller Selection Software (CSS).
|
(16) - For more details on the operating limits please refer to the Chiller Selection Software (CSS).
|
|
(17) - The sound pressure level is calculated from the sound power level and is for information only and not considered binding
|
(17) - The sound pressure level is calculated from the sound power level and is for information only and not considered binding
|
(17) - The sound pressure level is calculated from the sound power level and is for information only and not considered binding
|
(17) - The sound pressure level is calculated from the sound power level and is for information only and not considered binding
|
(17) - The sound pressure level is calculated from the sound power level and is for information only and not considered binding
|
(17) - The sound pressure level is calculated from the sound power level and is for information only and not considered binding
|
|
(18) - Fluid: Water
|
(18) - Fluid: Water
|
(18) - Fluid: Water
|
(18) - Fluid: Water
|
(18) - Fluid: Water
|
(18) - Fluid: Water
|
|
(19) - Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels.
|
(19) - Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels.
|
(19) - Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels.
|
(19) - Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels.
|
(19) - Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels.
|
(19) - Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels.
|