Specifications Table for EWAD-TZSR

EWAD170TZSR EWAD205TZSR EWAD235TZSR EWAD270TZSR EWAD320TZSR EWAD365TZSR EWAD370TZSR EWAD415TZSR EWAD465TZSR EWAD500TZSR EWAD540TZSR EWAD590TZSR EWAD640TZSR EWAD710TZSR
Cooling capacity Nom. kW 170 204.9 229.1 268.4 316.6 364.7 365.7 412.1 462.6 498.6 535.7 588.8 639.9 710.2
Capacity control Method   Variable Variable Variable Variable Variable Variable Variable Variable Variable Variable Variable Variable Variable Variable
  Minimum capacity % 33.3 28.6 33.3 28.6 25 22.2 15.4 14.3 16.7 15.4 14.3 13.3 12.5 11.1
Power input Cooling Nom. kW 62.21 72.51 79.05 96.04 115.7 133.2 133.7 144.6 163.6 177.9 190.1 216.6 234.8 266.6
EER 2.733 2.826 2.898 2.795 2.736 2.739 2.735 2.85 2.829 2.803 2.817 2.719 2.725 2.664
IPLV 5.8 5.99 6.02 5.84 5.94 5.78 5.86 6.18 6.16 6.09 6.07 6.09 6.13 6.04
SEER 4.2 4.4 4.5 4.5 4.7 4.7 5.6 5.1 4.8 6.0 4.8 4.8 4.9 4.9
Dimensions Unit Depth mm 3,461 4,361 4,361 5,261 5,261 3,218 3,218 4,117 4,117 4,117 5,015 5,015 5,015 5,917
    Height mm 2,270 2,270 2,270 2,270 2,270 2,270 2,222 2,222 2,222 2,222 2,222 2,222 2,222 2,222
    Width mm 1,224 1,224 1,224 1,224 1,224 2,258 2,258 2,258 2,258 2,258 2,258 2,258 2,258 2,258
Weight Operation weight kg 2,013 2,174 2,280 2,602 2,693 2,903 4,190 4,622 4,785 4,840 5,068 5,357 5,426 5,748
  Unit kg 1,996 2,075 2,181 2,576 2,541 2,854 4,101 4,452 4,621 4,676 4,904 5,087 5,164 5,486
Casing Colour   Ivory white Ivory white Ivory white Ivory white Ivory white Ivory white Ivory white Ivory white Ivory white Ivory white Ivory white Ivory white Ivory white Ivory white
  Material   Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet
Air heat exchanger Type   High efficiency fin and tube type High efficiency fin and tube type High efficiency fin and tube type High efficiency fin and tube type High efficiency fin and tube type High efficiency fin and tube type High efficiency fin and tube type High efficiency fin and tube type High efficiency fin and tube type High efficiency fin and tube type High efficiency fin and tube type High efficiency fin and tube type High efficiency fin and tube type High efficiency fin and tube type
Fan Quantity   3 4 4 5 5 6 6 8 8 8 10 10 10 12
  Type   Direct propeller Direct propeller Direct propeller Direct propeller Direct propeller Direct propeller Direct propeller Direct propeller Direct propeller Direct propeller Direct propeller Direct propeller Direct propeller Direct propeller
Fan motor Drive   ON/OFF ON/OFF ON/OFF ON/OFF ON/OFF ON/OFF ON/OFF ON/OFF ON/OFF ON/OFF ON/OFF ON/OFF ON/OFF ON/OFF
Compressor Quantity   1 1 1 1 1 1 2 2 2 2 2 2 2 2
  Type   Inverter driven single screw compressor Inverter driven single screw compressor Inverter driven single screw compressor Inverter driven single screw compressor Inverter driven single screw compressor Inverter driven single screw compressor Inverter driven single screw compressor Inverter driven single screw compressor Inverter driven single screw compressor Inverter driven single screw compressor Inverter driven single screw compressor Inverter driven single screw compressor Inverter driven single screw compressor Inverter driven single screw compressor
  Starting method   Inverter driven Inverter driven Inverter driven Inverter driven Inverter driven Inverter driven Inverter driven Inverter driven Inverter driven Inverter driven Inverter driven Inverter driven Inverter driven Inverter driven
Operation range Air side Cooling Min. °CDB -18 -18 -18 -18 -18 -18 -18 -18 -18 -18 -18 -18 -18 -18
      Max. °CDB 47 47 47 47 47 47 47 47 47 47 47 47 47 47
  Water side Evaporator Min. °CDB -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8
      Max. °CDB 15 15 15 15 15 15 15 15 15 15 15 15 15 15
Sound power level Cooling Nom. dBA 89.0 89.0 89.0 89.0 90.0 92.0 92.0 92.0 92.0 92.0 92.0 93.0 93.0 95.0
Sound pressure level Cooling Nom. dBA 70.0 70.0 69.0 70.0 71.0 73.0 73.0 72.0 72.0 72.0 72.0 73.0 73.0 74.0
Refrigerant Type   R-134a R-134a R-134a R-134a R-134a R-134a R-134a R-134a R-134a R-134a R-134a R-134a R-134a R-134a
  GWP   1,430 1,430 1,430 1,430 1,430 1,430 1,430 1,430 1,430 1,430 1,430 1,430 1,430 1,430
  Charge kg 29 35 39 46 54 62 62 70 79 85 91 100 109 121
  Circuits Quantity   1 1 1 1 1 1 2 2 2 2 2 2 2 2
Piping connections Evaporator water inlet/outlet (OD)   88.9mm 88.9mm 88.9mm 88.9mm 88.9mm 88.9mm 114.3mm 139.7mm 139.7mm 139.7mm 139.7mm 168.3mm 168.3mm 168.3mm
Power supply Phase   3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~
  Frequency Hz 50 50 50 50 50 50 50 50 50 50 50 50 50 50
  Voltage V 400 400 400 400 400 400 400 400 400 400 400 400 400 400
  Voltage range Min. % -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10
    Max. % 10 10 10 10 10 10 10 10 10 10 10 10 10 10
Unit Starting current Max A 3 3 3 3 3 3 3 3 3 3 3 3 3 3
  Running current Cooling Nom. A 105 121 132 159 191 218 223 241 273 294 314 359 385 434
    Max A 120 142 156 185 215 246 259 284 313 339 370 402 430 491
  Max unit current for wires sizing A 130 155 170 186 234 246 282 310 341 367 372 438 469 491
Notes (1) - Performance calculations according to EN 14511 (1) - Performance calculations according to EN 14511 (1) - Performance calculations according to EN 14511 (1) - Performance calculations according to EN 14511 (1) - Performance calculations according to EN 14511 (1) - Performance calculations according to EN 14511 (1) - Performance calculations according to EN 14511 (1) - Performance calculations according to EN 14511 (1) - Performance calculations according to EN 14511 (1) - Performance calculations according to EN 14511 (1) - Performance calculations according to EN 14511 (1) - Performance calculations according to EN 14511 (1) - Performance calculations according to EN 14511 (1) - Performance calculations according to EN 14511
  (2) - Sound power level (at standard conditions) is measured in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units (2) - Sound power level (at standard conditions) is measured in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units (2) - Sound power level (at standard conditions) is measured in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units (2) - Sound power level (at standard conditions) is measured in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units (2) - Sound power level (at standard conditions) is measured in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units (2) - Sound power level (at standard conditions) is measured in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units (2) - Sound power level (at standard conditions) is measured in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units (2) - Sound power level (at standard conditions) is measured in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units (2) - Sound power level (at standard conditions) is measured in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units (2) - Sound power level (at standard conditions) is measured in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units (2) - Sound power level (at standard conditions) is measured in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units (2) - Sound power level (at standard conditions) is measured in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units (2) - Sound power level (at standard conditions) is measured in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units (2) - Sound power level (at standard conditions) is measured in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units
  (3) - Fluid: Water (3) - Fluid: Water (3) - Fluid: Water (3) - Fluid: Water (3) - Fluid: Water (3) - Fluid: Water (3) - Fluid: Water (3) - Fluid: Water (3) - Fluid: Water (3) - Fluid: Water (3) - Fluid: Water (3) - Fluid: Water (3) - Fluid: Water (3) - Fluid: Water
  (4) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (4) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (4) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (4) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (4) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (4) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (4) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (4) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (4) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (4) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (4) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (4) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (4) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (4) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%.
  (5) - Maximum starting current: unit is inverter driven. No inrush current at start up. Declared value refers to the stand-by current. (5) - Maximum starting current: unit is inverter driven. No inrush current at start up. Declared value refers to the stand-by current. (5) - Maximum starting current: unit is inverter driven. No inrush current at start up. Declared value refers to the stand-by current. (5) - Maximum starting current: unit is inverter driven. No inrush current at start up. Declared value refers to the stand-by current. (5) - Maximum starting current: unit is inverter driven. No inrush current at start up. Declared value refers to the stand-by current. (5) - Maximum starting current: unit is inverter driven. No inrush current at start up. Declared value refers to the stand-by current. (5) - Maximum starting current: unit is inverter driven. No inrush current at start up. Declared value refers to the stand-by current. (5) - Maximum starting current: unit is inverter driven. No inrush current at start up. Declared value refers to the stand-by current. (5) - Maximum starting current: unit is inverter driven. No inrush current at start up. Declared value refers to the stand-by current. (5) - Maximum starting current: unit is inverter driven. No inrush current at start up. Declared value refers to the stand-by current. (5) - Maximum starting current: unit is inverter driven. No inrush current at start up. Declared value refers to the stand-by current. (5) - Maximum starting current: unit is inverter driven. No inrush current at start up. Declared value refers to the stand-by current. (5) - Maximum starting current: unit is inverter driven. No inrush current at start up. Declared value refers to the stand-by current. (5) - Maximum starting current: unit is inverter driven. No inrush current at start up. Declared value refers to the stand-by current.
  (6) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (6) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (6) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (6) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (6) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (6) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (6) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (6) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (6) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (6) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (6) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (6) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (6) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (6) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current.
  (7) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (7) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (7) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (7) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (7) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (7) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (7) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (7) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (7) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (7) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (7) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (7) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (7) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (7) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current
  (8) - Maximum unit current for wires sizing is based on minimum allowed voltage. (8) - Maximum unit current for wires sizing is based on minimum allowed voltage. (8) - Maximum unit current for wires sizing is based on minimum allowed voltage. (8) - Maximum unit current for wires sizing is based on minimum allowed voltage. (8) - Maximum unit current for wires sizing is based on minimum allowed voltage. (8) - Maximum unit current for wires sizing is based on minimum allowed voltage. (8) - Maximum unit current for wires sizing is based on minimum allowed voltage. (8) - Maximum unit current for wires sizing is based on minimum allowed voltage. (8) - Maximum unit current for wires sizing is based on minimum allowed voltage. (8) - Maximum unit current for wires sizing is based on minimum allowed voltage. (8) - Maximum unit current for wires sizing is based on minimum allowed voltage. (8) - Maximum unit current for wires sizing is based on minimum allowed voltage. (8) - Maximum unit current for wires sizing is based on minimum allowed voltage. (8) - Maximum unit current for wires sizing is based on minimum allowed voltage.
  (9) - For more details on the operating limits please refer to the Chiller Selection Software (CSS). (9) - For more details on the operating limits please refer to the Chiller Selection Software (CSS). (9) - For more details on the operating limits please refer to the Chiller Selection Software (CSS). (9) - For more details on the operating limits please refer to the Chiller Selection Software (CSS). (9) - For more details on the operating limits please refer to the Chiller Selection Software (CSS). (9) - For more details on the operating limits please refer to the Chiller Selection Software (CSS). (9) - For more details on the operating limits please refer to the Chiller Selection Software (CSS). (9) - For more details on the operating limits please refer to the Chiller Selection Software (CSS). (9) - For more details on the operating limits please refer to the Chiller Selection Software (CSS). (9) - For more details on the operating limits please refer to the Chiller Selection Software (CSS). (9) - For more details on the operating limits please refer to the Chiller Selection Software (CSS). (9) - For more details on the operating limits please refer to the Chiller Selection Software (CSS). (9) - For more details on the operating limits please refer to the Chiller Selection Software (CSS). (9) - For more details on the operating limits please refer to the Chiller Selection Software (CSS).
  (10) - Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. (10) - Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. (10) - Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. (10) - Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. (10) - Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. (10) - Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. (10) - Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. (10) - Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. (10) - Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. (10) - Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. (10) - Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. (10) - Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. (10) - Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. (10) - Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels.