Specifications Table for EWYT-B-SR

EWYT085B-SRA1 EWYT105B-SRA1 EWYT135B-SRA1 EWYT175B-SRA1 EWYT205B-SRA2 EWYT215B-SRA1 EWYT235B-SRA2 EWYT255B-SRA2 EWYT300B-SRA2 EWYT340B-SRA2 EWYT390B-SRA2 EWYT430B-SRA2 EWYT490B-SRA2 EWYT540B-SRA2 EWYT590B-SRA2 EWYT630B-SRA2
Cooling capacity Nom. kW 74 96 119 150 186 189 209 226 265 311 344 368 424 470 519 557
Heating capacity Nom. kW 80.91 105.24 131.02 167.11 207.27 209.99 233.05 251.28 295.81 335.24 384.62 426.79 477.49 528.73 581.03 615.34
Capacity control Method   Step Step Step Step Step Step Step Step Step Step Step Step Step Step Step Step
  Minimum capacity % 50 38 50 38 19 50 17 25 22 19 17 25 22 19 18 17
Power input Cooling Nom. kW 28.7 37.4 45.5 59.5 73.2 74.3 80.7 88.8 102 117 131 147 172 195 207 221
  Heating Nom. kW 27.99 36.24 44.84 58.45 71.9 73.28 81.39 86.29 102.09 113.54 132.02 144.34 160.28 178.33 194.13 206.57
EER 2.56 2.58 2.61 2.53 2.54 2.55 2.59 2.55 2.59 2.64 2.61 2.5 2.46 2.41 2.5 2.51
COP 2.891 2.904 2.922 2.859 2.883 2.866 2.863 2.912 2.898 2.953 2.913 2.957 2.979 2.965 2.993 2.979
Dimensions Unit Depth mm 2,225 2,825 3,425 3,425 4,350 4,025 4,950 4,950 3,225 3,225 4,125 4,125 4,125 4,125 5,025 5,025
    Height mm 1,800 1,800 1,800 1,800 1,800 1,800 1,800 1,800 2,514 2,514 2,514 2,514 2,514 2,514 2,514 2,514
    Width mm 1,195 1,195 1,195 1,195 1,195 1,195 1,195 1,195 2,282 2,282 2,282 2,282 2,282 2,282 2,282 2,282
Weight Operation weight kg 992 1,102 1,202 1,357 1,541 1,541 1,841 1,869 2,274 2,430 3,360 3,370 3,367 3,557 4,462 4,468
  Unit kg 985 1,095 1,195 1,350 1,530 1,530 1,830 1,855 2,260 2,410 3,340 3,350 3,340 3,530 4,427 4,427
Water heat exchanger Type   Plate heat exchanger Plate heat exchanger Plate heat exchanger Plate heat exchanger Plate heat exchanger Plate heat exchanger Plate heat exchanger Plate heat exchanger Plate heat exchanger Plate heat exchanger Plate heat exchanger Plate heat exchanger Plate heat exchanger Plate heat exchanger Plate heat exchanger Plate heat exchanger
  Water volume l 7 7 7 7 11 11 11 14 14 20 20 20 27 27 35 41
Air heat exchanger Type   High efficiency fin and tube type High efficiency fin and tube type High efficiency fin and tube type High efficiency fin and tube type High efficiency fin and tube type High efficiency fin and tube type High efficiency fin and tube type High efficiency fin and tube type High efficiency fin and tube type High efficiency fin and tube type High efficiency fin and tube type High efficiency fin and tube type High efficiency fin and tube type High efficiency fin and tube type High efficiency fin and tube type High efficiency fin and tube type
Fan Air flow rate Nom. l/s 6,026 9,483 12,644 12,052 15,064 15,065 18,078 18,078 23,608 28,330 39,446 39,446 38,610 37,774 48,262 47,216
  Speed rpm 1,200 1,200 1,200 1,200 1,200 1,200 1,200 1,200 780 780 780 780 780 780 780 780
Compressor Quantity   2 2 2 2 4 2 4 4 4 4 4 4 5 6 6 6
  Type   Scroll compressor Scroll compressor Scroll compressor Scroll compressor Scroll compressor Scroll compressor Scroll compressor Scroll compressor Scroll compressor Scroll compressor Scroll compressor Scroll compressor Scroll compressor Scroll compressor Scroll compressor Scroll compressor
Sound power level Cooling Nom. dBA 78 82 84 85 84 87 86 86 87 88 89 89.3 89.4 89.5 90.4 90.5
Sound pressure level Cooling Nom. dBA 60 64 65 67 66 68 67 67 68 68 69 69.3 69.4 69.5 70 70.1
Refrigerant Type   R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32
  Circuits Quantity   1 1 1 1 2 1 2 2 2 2 2 2 2 2 2 2
  Charge kg 11 19 27 27 35 35 43 43 27.5 42 71 71 71 71 85.5 100
Power supply Phase   3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~
  Frequency Hz 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50
  Voltage V 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400
Compressor Starting method   Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line
Notes (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: 12,0/7,0°C; ambient 35,0°C, unit at full load operation; operating fluid: Water; fouling factor = 0. EN14511:2018 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: 12,0/7,0°C; ambient 35,0°C, unit at full load operation; operating fluid: Water; fouling factor = 0. EN14511:2018 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: 12,0/7,0°C; ambient 35,0°C, unit at full load operation; operating fluid: Water; fouling factor = 0. EN14511:2018 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: 12,0/7,0°C; ambient 35,0°C, unit at full load operation; operating fluid: Water; fouling factor = 0. EN14511:2018 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: 12,0/7,0°C; ambient 35,0°C, unit at full load operation; operating fluid: Water; fouling factor = 0. EN14511:2018 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: 12,0/7,0°C; ambient 35,0°C, unit at full load operation; operating fluid: Water; fouling factor = 0. EN14511:2018 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: 12,0/7,0°C; ambient 35,0°C, unit at full load operation; operating fluid: Water; fouling factor = 0. EN14511:2018 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: 12,0/7,0°C; ambient 35,0°C, unit at full load operation; operating fluid: Water; fouling factor = 0. EN14511:2018 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: 12,0/7,0°C; ambient 35,0°C, unit at full load operation; operating fluid: Water; fouling factor = 0. EN14511:2018 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: 12,0/7,0°C; ambient 35,0°C, unit at full load operation; operating fluid: Water; fouling factor = 0. EN14511:2018 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: 12,0/7,0°C; ambient 35,0°C, unit at full load operation; operating fluid: Water; fouling factor = 0. EN14511:2018 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: 12,0/7,0°C; ambient 35,0°C, unit at full load operation; operating fluid: Water; fouling factor = 0. EN14511:2018 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: 12,0/7,0°C; ambient 35,0°C, unit at full load operation; operating fluid: Water; fouling factor = 0. EN14511:2018 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: 12,0/7,0°C; ambient 35,0°C, unit at full load operation; operating fluid: Water; fouling factor = 0. EN14511:2018 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: 12,0/7,0°C; ambient 35,0°C, unit at full load operation; operating fluid: Water; fouling factor = 0. EN14511:2018 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: 12,0/7,0°C; ambient 35,0°C, unit at full load operation; operating fluid: Water; fouling factor = 0. EN14511:2018
  (2) - All the performances (Heating capacity, unit power input in heating and COP) are based on the following conditions: 40,0/45,0°C; ambient 7,0°C, unit at full load operation; operating fluid: Water; fouling factor = 0. EN14511:2018 (2) - All the performances (Heating capacity, unit power input in heating and COP) are based on the following conditions: 40,0/45,0°C; ambient 7,0°C, unit at full load operation; operating fluid: Water; fouling factor = 0. EN14511:2018 (2) - All the performances (Heating capacity, unit power input in heating and COP) are based on the following conditions: 40,0/45,0°C; ambient 7,0°C, unit at full load operation; operating fluid: Water; fouling factor = 0. EN14511:2018 (2) - All the performances (Heating capacity, unit power input in heating and COP) are based on the following conditions: 40,0/45,0°C; ambient 7,0°C, unit at full load operation; operating fluid: Water; fouling factor = 0. EN14511:2018 (2) - All the performances (Heating capacity, unit power input in heating and COP) are based on the following conditions: 40,0/45,0°C; ambient 7,0°C, unit at full load operation; operating fluid: Water; fouling factor = 0. EN14511:2018 (2) - All the performances (Heating capacity, unit power input in heating and COP) are based on the following conditions: 40,0/45,0°C; ambient 7,0°C, unit at full load operation; operating fluid: Water; fouling factor = 0. EN14511:2018 (2) - All the performances (Heating capacity, unit power input in heating and COP) are based on the following conditions: 40,0/45,0°C; ambient 7,0°C, unit at full load operation; operating fluid: Water; fouling factor = 0. EN14511:2018 (2) - All the performances (Heating capacity, unit power input in heating and COP) are based on the following conditions: 40,0/45,0°C; ambient 7,0°C, unit at full load operation; operating fluid: Water; fouling factor = 0. EN14511:2018 (2) - All the performances (Heating capacity, unit power input in heating and COP) are based on the following conditions: 40,0/45,0°C; ambient 7,0°C, unit at full load operation; operating fluid: Water; fouling factor = 0. EN14511:2018 (2) - All the performances (Heating capacity, unit power input in heating and COP) are based on the following conditions: 40,0/45,0°C; ambient 7,0°C, unit at full load operation; operating fluid: Water; fouling factor = 0. EN14511:2018 (2) - All the performances (Heating capacity, unit power input in heating and COP) are based on the following conditions: 40,0/45,0°C; ambient 7,0°C, unit at full load operation; operating fluid: Water; fouling factor = 0. EN14511:2018 (2) - All the performances (Heating capacity, unit power input in heating and COP) are based on the following conditions: 40,0/45,0°C; ambient 7,0°C, unit at full load operation; operating fluid: Water; fouling factor = 0. EN14511:2018 (2) - All the performances (Heating capacity, unit power input in heating and COP) are based on the following conditions: 40,0/45,0°C; ambient 7,0°C, unit at full load operation; operating fluid: Water; fouling factor = 0. EN14511:2018 (2) - All the performances (Heating capacity, unit power input in heating and COP) are based on the following conditions: 40,0/45,0°C; ambient 7,0°C, unit at full load operation; operating fluid: Water; fouling factor = 0. EN14511:2018 (2) - All the performances (Heating capacity, unit power input in heating and COP) are based on the following conditions: 40,0/45,0°C; ambient 7,0°C, unit at full load operation; operating fluid: Water; fouling factor = 0. EN14511:2018 (2) - All the performances (Heating capacity, unit power input in heating and COP) are based on the following conditions: 40,0/45,0°C; ambient 7,0°C, unit at full load operation; operating fluid: Water; fouling factor = 0. EN14511:2018
  (3) - SCOP is based on the following conditions: Tbivalent -5 °C, Tdesign -10 °C, Average ambient conditions, Ref. EN14825. In accordance with standard EN14825, comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) No 2016/2281; (3) - SCOP is based on the following conditions: Tbivalent -5 °C, Tdesign -10 °C, Average ambient conditions, Ref. EN14825. In accordance with standard EN14825, comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) No 2016/2281; (3) - SCOP is based on the following conditions: Tbivalent -5 °C, Tdesign -10 °C, Average ambient conditions, Ref. EN14825. In accordance with standard EN14825, comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) No 2016/2281; (3) - SCOP is based on the following conditions: Tbivalent -5 °C, Tdesign -10 °C, Average ambient conditions, Ref. EN14825. In accordance with standard EN14825, comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) No 2016/2281; (3) - SCOP is based on the following conditions: Tbivalent -5 °C, Tdesign -10 °C, Average ambient conditions, Ref. EN14825. In accordance with standard EN14825, comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) No 2016/2281; (3) - SCOP is based on the following conditions: Tbivalent -5 °C, Tdesign -10 °C, Average ambient conditions, Ref. EN14825. In accordance with standard EN14825, comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) No 2016/2281; (3) - SCOP is based on the following conditions: Tbivalent -5 °C, Tdesign -10 °C, Average ambient conditions, Ref. EN14825. In accordance with standard EN14825, comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) No 2016/2281; (3) - SCOP is based on the following conditions: Tbivalent -5 °C, Tdesign -10 °C, Average ambient conditions, Ref. EN14825. In accordance with standard EN14825, comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) No 2016/2281; (3) - SCOP is based on the following conditions: Tbivalent -5 °C, Tdesign -10 °C, Average ambient conditions, Ref. EN14825. In accordance with standard EN14825, comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) No 2016/2281; (3) - SCOP is based on the following conditions: Tbivalent -5 °C, Tdesign -10 °C, Average ambient conditions, Ref. EN14825. In accordance with standard EN14825, comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) No 2016/2281; (3) - SCOP is based on the following conditions: Tbivalent -5 °C, Tdesign -10 °C, Average ambient conditions, Ref. EN14825. In accordance with standard EN14825, comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) No 2016/2281; (3) - SCOP is based on the following conditions: Tbivalent -5 °C, Tdesign -10 °C, Average ambient conditions, Ref. EN14825. In accordance with standard EN14825, comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) No 2016/2281; (3) - SCOP is based on the following conditions: Tbivalent -5 °C, Tdesign -10 °C, Average ambient conditions, Ref. EN14825. In accordance with standard EN14825, comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) No 2016/2281; (3) - SCOP is based on the following conditions: Tbivalent -5 °C, Tdesign -10 °C, Average ambient conditions, Ref. EN14825. In accordance with standard EN14825, comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) No 2016/2281; (3) - SCOP is based on the following conditions: Tbivalent -5 °C, Tdesign -10 °C, Average ambient conditions, Ref. EN14825. In accordance with standard EN14825, comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) No 2016/2281; (3) - SCOP is based on the following conditions: Tbivalent -5 °C, Tdesign -10 °C, Average ambient conditions, Ref. EN14825. In accordance with standard EN14825, comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) No 2016/2281;
  (4) - PHE: Plate Heat Exchanger; S&T: Single Pass Shell & Tube; MCH: Microchannel; DPT: Direct Propeller Type; DOL: Direct On Line - VFD: Inverter (4) - PHE: Plate Heat Exchanger; S&T: Single Pass Shell & Tube; MCH: Microchannel; DPT: Direct Propeller Type; DOL: Direct On Line - VFD: Inverter (4) - PHE: Plate Heat Exchanger; S&T: Single Pass Shell & Tube; MCH: Microchannel; DPT: Direct Propeller Type; DOL: Direct On Line - VFD: Inverter (4) - PHE: Plate Heat Exchanger; S&T: Single Pass Shell & Tube; MCH: Microchannel; DPT: Direct Propeller Type; DOL: Direct On Line - VFD: Inverter (4) - PHE: Plate Heat Exchanger; S&T: Single Pass Shell & Tube; MCH: Microchannel; DPT: Direct Propeller Type; DOL: Direct On Line - VFD: Inverter (4) - PHE: Plate Heat Exchanger; S&T: Single Pass Shell & Tube; MCH: Microchannel; DPT: Direct Propeller Type; DOL: Direct On Line - VFD: Inverter (4) - PHE: Plate Heat Exchanger; S&T: Single Pass Shell & Tube; MCH: Microchannel; DPT: Direct Propeller Type; DOL: Direct On Line - VFD: Inverter (4) - PHE: Plate Heat Exchanger; S&T: Single Pass Shell & Tube; MCH: Microchannel; DPT: Direct Propeller Type; DOL: Direct On Line - VFD: Inverter (4) - PHE: Plate Heat Exchanger; S&T: Single Pass Shell & Tube; MCH: Microchannel; DPT: Direct Propeller Type; DOL: Direct On Line - VFD: Inverter (4) - PHE: Plate Heat Exchanger; S&T: Single Pass Shell & Tube; MCH: Microchannel; DPT: Direct Propeller Type; DOL: Direct On Line - VFD: Inverter (4) - PHE: Plate Heat Exchanger; S&T: Single Pass Shell & Tube; MCH: Microchannel; DPT: Direct Propeller Type; DOL: Direct On Line - VFD: Inverter (4) - PHE: Plate Heat Exchanger; S&T: Single Pass Shell & Tube; MCH: Microchannel; DPT: Direct Propeller Type; DOL: Direct On Line - VFD: Inverter (4) - PHE: Plate Heat Exchanger; S&T: Single Pass Shell & Tube; MCH: Microchannel; DPT: Direct Propeller Type; DOL: Direct On Line - VFD: Inverter (4) - PHE: Plate Heat Exchanger; S&T: Single Pass Shell & Tube; MCH: Microchannel; DPT: Direct Propeller Type; DOL: Direct On Line - VFD: Inverter (4) - PHE: Plate Heat Exchanger; S&T: Single Pass Shell & Tube; MCH: Microchannel; DPT: Direct Propeller Type; DOL: Direct On Line - VFD: Inverter (4) - PHE: Plate Heat Exchanger; S&T: Single Pass Shell & Tube; MCH: Microchannel; DPT: Direct Propeller Type; DOL: Direct On Line - VFD: Inverter
  (5) - Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated from sound power level and used for info only, not considered bounding (5) - Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated from sound power level and used for info only, not considered bounding (5) - Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated from sound power level and used for info only, not considered bounding (5) - Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated from sound power level and used for info only, not considered bounding (5) - Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated from sound power level and used for info only, not considered bounding (5) - Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated from sound power level and used for info only, not considered bounding (5) - Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated from sound power level and used for info only, not considered bounding (5) - Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated from sound power level and used for info only, not considered bounding (5) - Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated from sound power level and used for info only, not considered bounding (5) - Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated from sound power level and used for info only, not considered bounding (5) - Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated from sound power level and used for info only, not considered bounding (5) - Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated from sound power level and used for info only, not considered bounding (5) - Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated from sound power level and used for info only, not considered bounding (5) - Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated from sound power level and used for info only, not considered bounding (5) - Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated from sound power level and used for info only, not considered bounding (5) - Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated from sound power level and used for info only, not considered bounding
  (6) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (6) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (6) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (6) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (6) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (6) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (6) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (6) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (6) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (6) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (6) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (6) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (6) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (6) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (6) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (6) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition
  (7) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (7) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (7) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (7) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (7) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (7) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (7) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (7) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (7) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (7) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (7) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (7) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (7) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (7) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (7) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (7) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request.
  (8) - The data are referred to the unit without additional options. (8) - The data are referred to the unit without additional options. (8) - The data are referred to the unit without additional options. (8) - The data are referred to the unit without additional options. (8) - The data are referred to the unit without additional options. (8) - The data are referred to the unit without additional options. (8) - The data are referred to the unit without additional options. (8) - The data are referred to the unit without additional options. (8) - The data are referred to the unit without additional options. (8) - The data are referred to the unit without additional options. (8) - The data are referred to the unit without additional options. (8) - The data are referred to the unit without additional options. (8) - The data are referred to the unit without additional options. (8) - The data are referred to the unit without additional options. (8) - The data are referred to the unit without additional options. (8) - The data are referred to the unit without additional options.
  (9) - The values of the Pressure Drops refers to the pressure drops in the Water heat exchanger only. (9) - The values of the Pressure Drops refers to the pressure drops in the Water heat exchanger only. (9) - The values of the Pressure Drops refers to the pressure drops in the Water heat exchanger only. (9) - The values of the Pressure Drops refers to the pressure drops in the Water heat exchanger only. (9) - The values of the Pressure Drops refers to the pressure drops in the Water heat exchanger only. (9) - The values of the Pressure Drops refers to the pressure drops in the Water heat exchanger only. (9) - The values of the Pressure Drops refers to the pressure drops in the Water heat exchanger only. (9) - The values of the Pressure Drops refers to the pressure drops in the Water heat exchanger only. (9) - The values of the Pressure Drops refers to the pressure drops in the Water heat exchanger only. (9) - The values of the Pressure Drops refers to the pressure drops in the Water heat exchanger only. (9) - The values of the Pressure Drops refers to the pressure drops in the Water heat exchanger only. (9) - The values of the Pressure Drops refers to the pressure drops in the Water heat exchanger only. (9) - The values of the Pressure Drops refers to the pressure drops in the Water heat exchanger only. (9) - The values of the Pressure Drops refers to the pressure drops in the Water heat exchanger only. (9) - The values of the Pressure Drops refers to the pressure drops in the Water heat exchanger only. (9) - The values of the Pressure Drops refers to the pressure drops in the Water heat exchanger only.
  (10) - Fluid: Water (10) - Fluid: Water (10) - Fluid: Water (10) - Fluid: Water (10) - Fluid: Water (10) - Fluid: Water (10) - Fluid: Water (10) - Fluid: Water (10) - Fluid: Water (10) - Fluid: Water (10) - Fluid: Water (10) - Fluid: Water (10) - Fluid: Water (10) - Fluid: Water (10) - Fluid: Water (10) - Fluid: Water
  (11) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (11) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (11) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (11) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (11) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (11) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (11) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (11) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (11) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (11) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (11) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (11) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (11) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (11) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (11) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (11) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%.
  (12) - Maximum starting current: In case of inverter driven units, no inrush current at start up is experienced. (12) - Maximum starting current: In case of inverter driven units, no inrush current at start up is experienced. (12) - Maximum starting current: In case of inverter driven units, no inrush current at start up is experienced. (12) - Maximum starting current: In case of inverter driven units, no inrush current at start up is experienced. (12) - Maximum starting current: In case of inverter driven units, no inrush current at start up is experienced. (12) - Maximum starting current: In case of inverter driven units, no inrush current at start up is experienced. (12) - Maximum starting current: In case of inverter driven units, no inrush current at start up is experienced. (12) - Maximum starting current: In case of inverter driven units, no inrush current at start up is experienced. (12) - Maximum starting current: In case of inverter driven units, no inrush current at start up is experienced. (12) - Maximum starting current: In case of inverter driven units, no inrush current at start up is experienced. (12) - Maximum starting current: In case of inverter driven units, no inrush current at start up is experienced. (12) - Maximum starting current: In case of inverter driven units, no inrush current at start up is experienced. (12) - Maximum starting current: In case of inverter driven units, no inrush current at start up is experienced. (12) - Maximum starting current: In case of inverter driven units, no inrush current at start up is experienced. (12) - Maximum starting current: In case of inverter driven units, no inrush current at start up is experienced. (12) - Maximum starting current: In case of inverter driven units, no inrush current at start up is experienced.
  (13) - Nominal current in cooling mode is referred to the following conditions: Water Side Heat Exchanger 12/7°C; ambient 35°C; compressors + fans current (13) - Nominal current in cooling mode is referred to the following conditions: Water Side Heat Exchanger 12/7°C; ambient 35°C; compressors + fans current (13) - Nominal current in cooling mode is referred to the following conditions: Water Side Heat Exchanger 12/7°C; ambient 35°C; compressors + fans current (13) - Nominal current in cooling mode is referred to the following conditions: Water Side Heat Exchanger 12/7°C; ambient 35°C; compressors + fans current (13) - Nominal current in cooling mode is referred to the following conditions: Water Side Heat Exchanger 12/7°C; ambient 35°C; compressors + fans current (13) - Nominal current in cooling mode is referred to the following conditions: Water Side Heat Exchanger 12/7°C; ambient 35°C; compressors + fans current (13) - Nominal current in cooling mode is referred to the following conditions: Water Side Heat Exchanger 12/7°C; ambient 35°C; compressors + fans current (13) - Nominal current in cooling mode is referred to the following conditions: Water Side Heat Exchanger 12/7°C; ambient 35°C; compressors + fans current (13) - Nominal current in cooling mode is referred to the following conditions: Water Side Heat Exchanger 12/7°C; ambient 35°C; compressors + fans current (13) - Nominal current in cooling mode is referred to the following conditions: Water Side Heat Exchanger 12/7°C; ambient 35°C; compressors + fans current (13) - Nominal current in cooling mode is referred to the following conditions: Water Side Heat Exchanger 12/7°C; ambient 35°C; compressors + fans current (13) - Nominal current in cooling mode is referred to the following conditions: Water Side Heat Exchanger 12/7°C; ambient 35°C; compressors + fans current (13) - Nominal current in cooling mode is referred to the following conditions: Water Side Heat Exchanger 12/7°C; ambient 35°C; compressors + fans current (13) - Nominal current in cooling mode is referred to the following conditions: Water Side Heat Exchanger 12/7°C; ambient 35°C; compressors + fans current (13) - Nominal current in cooling mode is referred to the following conditions: Water Side Heat Exchanger 12/7°C; ambient 35°C; compressors + fans current (13) - Nominal current in cooling mode is referred to the following conditions: Water Side Heat Exchanger 12/7°C; ambient 35°C; compressors + fans current
  (14) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current. (14) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current. (14) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current. (14) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current. (14) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current. (14) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current. (14) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current. (14) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current. (14) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current. (14) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current. (14) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current. (14) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current. (14) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current. (14) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current. (14) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current. (14) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current.
  (15) - Maximum unit current for wires sizing is based on minimum allowed voltage. (15) - Maximum unit current for wires sizing is based on minimum allowed voltage. (15) - Maximum unit current for wires sizing is based on minimum allowed voltage. (15) - Maximum unit current for wires sizing is based on minimum allowed voltage. (15) - Maximum unit current for wires sizing is based on minimum allowed voltage. (15) - Maximum unit current for wires sizing is based on minimum allowed voltage. (15) - Maximum unit current for wires sizing is based on minimum allowed voltage. (15) - Maximum unit current for wires sizing is based on minimum allowed voltage. (15) - Maximum unit current for wires sizing is based on minimum allowed voltage. (15) - Maximum unit current for wires sizing is based on minimum allowed voltage. (15) - Maximum unit current for wires sizing is based on minimum allowed voltage. (15) - Maximum unit current for wires sizing is based on minimum allowed voltage. (15) - Maximum unit current for wires sizing is based on minimum allowed voltage. (15) - Maximum unit current for wires sizing is based on minimum allowed voltage. (15) - Maximum unit current for wires sizing is based on minimum allowed voltage. (15) - Maximum unit current for wires sizing is based on minimum allowed voltage.
  (16) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (16) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (16) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (16) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (16) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (16) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (16) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (16) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (16) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (16) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (16) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (16) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (16) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (16) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (16) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (16) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1
  (17) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (17) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (17) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (17) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (17) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (17) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (17) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (17) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (17) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (17) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (17) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (17) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (17) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (17) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (17) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (17) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book
  (18) - All data are subject to change without notice. Please refer to the unit nameplate data. (18) - All data are subject to change without notice. Please refer to the unit nameplate data. (18) - All data are subject to change without notice. Please refer to the unit nameplate data. (18) - All data are subject to change without notice. Please refer to the unit nameplate data. (18) - All data are subject to change without notice. Please refer to the unit nameplate data. (18) - All data are subject to change without notice. Please refer to the unit nameplate data. (18) - All data are subject to change without notice. Please refer to the unit nameplate data. (18) - All data are subject to change without notice. Please refer to the unit nameplate data. (18) - All data are subject to change without notice. Please refer to the unit nameplate data. (18) - All data are subject to change without notice. Please refer to the unit nameplate data. (18) - All data are subject to change without notice. Please refer to the unit nameplate data. (18) - All data are subject to change without notice. Please refer to the unit nameplate data. (18) - All data are subject to change without notice. Please refer to the unit nameplate data. (18) - All data are subject to change without notice. Please refer to the unit nameplate data. (18) - All data are subject to change without notice. Please refer to the unit nameplate data. (18) - All data are subject to change without notice. Please refer to the unit nameplate data.