Specifications Table for EWYQ-F-XS

EWYQ160F-XS EWYQ190F-XS EWYQ210F-XS EWYQ230F-XS EWYQ310F-XS EWYQ340F-XS EWYQ380F-XS EWYQ400F-XS EWYQ430F-XS EWYQ510F-XS EWYQ570F-XS EWYQ630F-XS
Cooling capacity Nom. kW 164 (1) 184 (1) 205 (1) 231 (1) 304 (1) 335 (1) 376 (1) 401 (1) 427 (1) 502 (1) 565 (1) 624.4
Heating capacity Nom. kW 173 (2) 197 (2) 227 (2) 254 (2) 329 (2) 362 (2) 404 (2) 429 (2) 463 (2) 535 (2) 607 (2)  
Capacity control Method   Step Step Step Step Step Step Step Step Step Step Step Staged
  Minimum capacity % 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 17.0 17.0 17
Power input Cooling Nom. kW 57.6 (1) 63.3 (1) 70.3 (1) 79.3 (1) 102 (1) 114 (1) 129 (1) 138 (1) 145 (1) 172 (1) 195 (1) 214.4
  Heating Nom. kW 54.0 (2) 61.6 (2) 70.5 (2) 79.2 (2) 101 (2) 113 (2) 126 (2) 133 (2) 140 (2) 167 (2) 190 (2)  
EER 2.84 (1) 2.91 (1) 2.92 (1) 2.92 (1) 2.99 (1) 2.93 (1) 2.91 (1) 2.90 (1) 2.94 (1) 2.92 (1) 2.90 (1) 2.912
COP 3.20 (2) 3.20 (2) 3.22 (2) 3.21 (2) 3.24 (2) 3.21 (2) 3.21 (2) 3.23 (2) 3.30 (2) 3.21 (2) 3.20 (2)  
ESEER 3.73 3.89 3.81 3.71 4.07 4.19 3.99 3.96 4.14 4.20 3.98 4.06
Dimensions Unit Depth mm 4,370 4,370 5,270 5,270 4,125 4,125 4,125 5,025 5,025 5,925 5,925 6,825
    Height mm 2,270 2,270 2,270 2,270 2,220 2,220 2,220 2,220 2,220 2,220 2,220 2,220
    Width mm 1,200 1,200 1,200 1,200 2,258 2,258 2,258 2,258 2,258 2,258 2,258 2,258
Weight Operation weight kg 1,470 1,890 2,340 2,390 2,980 2,990 3,000 3,840 3,850 4,370 4,400 4,780
  Unit kg 1,430 1,850 2,300 2,350 2,900 2,910 2,920 3,730 3,750 4,250 4,280 4,670
Water heat exchanger Type   Plate heat exchanger Plate heat exchanger Plate heat exchanger Plate heat exchanger Plate heat exchanger Plate heat exchanger Plate heat exchanger Plate heat exchanger Plate heat exchanger Plate heat exchanger Plate heat exchanger Plate heat exchanger
  Water volume l 18 18 18 18 44 44 44 60 60 70 70 70
Air heat exchanger Type   High efficiency fin and tube type with integral subcooler High efficiency fin and tube type with integral subcooler High efficiency fin and tube type with integral subcooler High efficiency fin and tube type with integral subcooler High efficiency fin and tube type with integral subcooler High efficiency fin and tube type with integral subcooler High efficiency fin and tube type with integral subcooler High efficiency fin and tube type with integral subcooler High efficiency fin and tube type with integral subcooler High efficiency fin and tube type with integral subcooler High efficiency fin and tube type with integral subcooler High efficiency fin and tube type
Fan Air flow rate Nom. l/s 22,577 21,593 26,992 26,992 43,187 43,187 43,187 55,213 53,983 64,780 64,780 75,577
  Speed rpm 900 900 900 900 900 900 900 900 900 900 900 900
Compressor Quantity   4 4 4 4 4 4 4 4 4 6 6 6
  Type   Scroll compressor Scroll compressor Scroll compressor Scroll compressor Scroll compressor Scroll compressor Scroll compressor Scroll compressor Scroll compressor Scroll compressor Scroll compressor Driven vapour compression
Sound power level Cooling Nom. dBA 92 94 95 95 97 97 98 99 99 99 100 100
Sound pressure level Cooling Nom. dBA 72 (5) 74 (5) 75 (5) 76 (5) 77 (5) 77 (5) 78 (5) 78 (5) 79 (5) 79 (5) 79 (5) 80
Refrigerant Type   R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A R-410A
  GWP   2,087.5 2,087.5 2,087.5 2,087.5 2,087.5 2,087.5 2,087.5 2,087.5 2,087.5 2,087.5 2,087.5 2,088
  Circuits Quantity   2 2 2 2 2 2 2 2 2 2 2 2
Charge Per circuit kg 16.0 20.0 20.0 24.0 35.0 36.0 35.0 46.0 46.0 55.0 52.5  
  Per circuit TCO2Eq 33.4 41.8 41.8 50.1 73.1 75.2 73.1 96.0 96.0 114.8 109.6 142.0
Refrigerant circuit Charge kg                       136
Power supply Phase   3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~
  Frequency Hz 50 50 50 50 50 50 50 50 50 50 50 50
  Voltage V 400 400 400 400 400 400 400 400 400 400 400 400
Compressor Starting method   Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line
Notes (1) - Cooling: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation. (1) - Cooling: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation. (1) - Cooling: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation. (1) - Cooling: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation. (1) - Cooling: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation. (1) - Cooling: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation. (1) - Cooling: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation. (1) - Cooling: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation. (1) - Cooling: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation. (1) - Cooling: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation. (1) - Cooling: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation. (1) - Cooling: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation.
  (2) - Heating: air exchanger 7.0 - 90%°C; water exchanger 40.0/45.0, unit at full load operation. (2) - Heating: air exchanger 7.0 - 90%°C; water exchanger 40.0/45.0, unit at full load operation. (2) - Heating: air exchanger 7.0 - 90%°C; water exchanger 40.0/45.0, unit at full load operation. (2) - Heating: air exchanger 7.0 - 90%°C; water exchanger 40.0/45.0, unit at full load operation. (2) - Heating: air exchanger 7.0 - 90%°C; water exchanger 40.0/45.0, unit at full load operation. (2) - Heating: air exchanger 7.0 - 90%°C; water exchanger 40.0/45.0, unit at full load operation. (2) - Heating: air exchanger 7.0 - 90%°C; water exchanger 40.0/45.0, unit at full load operation. (2) - Heating: air exchanger 7.0 - 90%°C; water exchanger 40.0/45.0, unit at full load operation. (2) - Heating: air exchanger 7.0 - 90%°C; water exchanger 40.0/45.0, unit at full load operation. (2) - Heating: air exchanger 7.0 - 90%°C; water exchanger 40.0/45.0, unit at full load operation. (2) - Heating: air exchanger 7.0 - 90%°C; water exchanger 40.0/45.0, unit at full load operation. (2) - Heating: air exchanger 7.0 - 90%°C; water exchanger 40.0/45.0, unit at full load operation.
  (3) - SCOP is based on the following conditions: Tbivalent +2°C, Tdesign -10°C, Average ambient conditions, Ref. EN14825. (3) - SCOP is based on the following conditions: Tbivalent +2°C, Tdesign -10°C, Average ambient conditions, Ref. EN14825. (3) - SCOP is based on the following conditions: Tbivalent +2°C, Tdesign -10°C, Average ambient conditions, Ref. EN14825. (3) - SCOP is based on the following conditions: Tbivalent +2°C, Tdesign -10°C, Average ambient conditions, Ref. EN14825. (3) - SCOP is based on the following conditions: Tbivalent +2°C, Tdesign -10°C, Average ambient conditions, Ref. EN14825. (3) - SCOP is based on the following conditions: Tbivalent +2°C, Tdesign -10°C, Average ambient conditions, Ref. EN14825. (3) - SCOP is based on the following conditions: Tbivalent +2°C, Tdesign -10°C, Average ambient conditions, Ref. EN14825. (3) - SCOP is based on the following conditions: Tbivalent +2°C, Tdesign -10°C, Average ambient conditions, Ref. EN14825. (3) - SCOP is based on the following conditions: Tbivalent +2°C, Tdesign -10°C, Average ambient conditions, Ref. EN14825. (3) - SCOP is based on the following conditions: Tbivalent +2°C, Tdesign -10°C, Average ambient conditions, Ref. EN14825. (3) - SCOP is based on the following conditions: Tbivalent +2°C, Tdesign -10°C, Average ambient conditions, Ref. EN14825. (3) - SCOP is based on the following conditions: Tbivalent +2°C, Tdesign -10°C, Average ambient conditions, Ref. EN14825.
  (4) - Fluid: Water (4) - Fluid: Water (4) - Fluid: Water (4) - Fluid: Water (4) - Fluid: Water (4) - Fluid: Water (4) - Fluid: Water (4) - Fluid: Water (4) - Fluid: Water (4) - Fluid: Water (4) - Fluid: Water (4) - Fluid: Water
  (5) - Sound pressure levels are measured at entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation; Standard: ISO3744 (5) - Sound pressure levels are measured at entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation; Standard: ISO3744 (5) - Sound pressure levels are measured at entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation; Standard: ISO3744 (5) - Sound pressure levels are measured at entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation; Standard: ISO3744 (5) - Sound pressure levels are measured at entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation; Standard: ISO3744 (5) - Sound pressure levels are measured at entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation; Standard: ISO3744 (5) - Sound pressure levels are measured at entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation; Standard: ISO3744 (5) - Sound pressure levels are measured at entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation; Standard: ISO3744 (5) - Sound pressure levels are measured at entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation; Standard: ISO3744 (5) - Sound pressure levels are measured at entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation; Standard: ISO3744 (5) - Sound pressure levels are measured at entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation; Standard: ISO3744 (5) - Sound pressure levels are measured at entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C; full load operation; Standard: ISO3744
  (6) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (6) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (6) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (6) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (6) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (6) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (6) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (6) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (6) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (6) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (6) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (6) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%.
  (7) - Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced. (7) - Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced. (7) - Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced. (7) - Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced. (7) - Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced. (7) - Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced. (7) - Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced. (7) - Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced. (7) - Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced. (7) - Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced. (7) - Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced. (7) - Maximum starting current: starting current of biggest compressor + current of the other compressors at maximum load + fans current at maximum load. In case of inverter driven units, no inrush current at start up is experienced.
  (8) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (8) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (8) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (8) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (8) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (8) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (8) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (8) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (8) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (8) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (8) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (8) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current.
  (9) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (9) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (9) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (9) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (9) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (9) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (9) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (9) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (9) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (9) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (9) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (9) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current
  (10) - Maximum unit current for wires sizing is based on minimum allowed voltage. (10) - Maximum unit current for wires sizing is based on minimum allowed voltage. (10) - Maximum unit current for wires sizing is based on minimum allowed voltage. (10) - Maximum unit current for wires sizing is based on minimum allowed voltage. (10) - Maximum unit current for wires sizing is based on minimum allowed voltage. (10) - Maximum unit current for wires sizing is based on minimum allowed voltage. (10) - Maximum unit current for wires sizing is based on minimum allowed voltage. (10) - Maximum unit current for wires sizing is based on minimum allowed voltage. (10) - Maximum unit current for wires sizing is based on minimum allowed voltage. (10) - Maximum unit current for wires sizing is based on minimum allowed voltage. (10) - Maximum unit current for wires sizing is based on minimum allowed voltage. (10) - Maximum unit current for wires sizing is based on minimum allowed voltage.
  (11) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (11) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (11) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (11) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (11) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (11) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (11) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (11) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (11) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (11) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (11) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (11) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1
  (12) - For more details, see operation range drawing (12) - For more details, see operation range drawing (12) - For more details, see operation range drawing (12) - For more details, see operation range drawing (12) - For more details, see operation range drawing (12) - For more details, see operation range drawing (12) - For more details, see operation range drawing (12) - For more details, see operation range drawing (12) - For more details, see operation range drawing (12) - For more details, see operation range drawing (12) - For more details, see operation range drawing (12) - For more details, see operation range drawing
  (13) - Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. (13) - Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. (13) - Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. (13) - Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. (13) - Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. (13) - Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. (13) - Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. (13) - Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. (13) - Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. (13) - Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. (13) - Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. (13) - Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels.