Specifications Table for EWAT-B-XL

EWAT085B-XLA1 EWAT115B-XLA1 EWAT145B-XLA1 EWAT180B-XLA2-VFDFAN EWAT180B-XLA2 EWAT185B-XLA1 EWAT200B-XLA2 EWAT220B-XLA2-VFDFAN EWAT220B-XLA2 EWAT230B-XLA1-VFDFAN EWAT230B-XLA1 EWAT250B-XLA2-VFDFAN EWAT250B-XLA2 EWAT280B-XLA2-VFDFAN EWAT280B-XLA2 EWAT300B-XLA1-VFDFAN EWAT300B-XLA1 EWAT310B-XLA2 EWAT310B-XLA2-VFDFAN EWAT320B-XLA2-VFDFAN EWAT320B-XLA2 EWAT360B-XLA1-VFDFAN EWAT360B-XLA1 EWAT370B-XLA2-VFDFAN EWAT370B-XLA2 EWAT430B-XLA2-VFDFAN EWAT430B-XLA2 EWAT470B-XLA2-VFDFAN EWAT470B-XLA2 EWAT540B-XLA2-VFDFAN EWAT540B-XLA2 EWAT600B-XLA2-VFDFAN EWAT600B-XLA2 EWAT660B-XLA2-VFDFAN EWAT660B-XLA2 EWAT700B-XLA2-VFDFAN EWAT700B-XLA2
Cooling capacity Nom. kW 87.7 113.64 143.23 178.64 178.64 182.18 200.33 225.65 225.65 238.26 238.26 254.08 254.08 280.99 280.99 303.6 303.6 304.42 304.42 325.3 325.3 350.13 350.13 370.33 370.33 423.61 423.61 470.48 470.48 536.64 536.64 606.55 606.55 659.77 659.77 701.27 701.27
Capacity control Method   Staged Staged Staged Variable Variable Staged Variable Variable Variable Staged Staged Variable Variable Variable Variable Variable Variable Variable Variable Variable Variable Variable Variable Variable Variable Variable Variable Variable Variable Variable Variable Variable Variable Variable Variable Variable Variable
  Minimum capacity % 50 38 50 25 25 38 21 19 19 50 50 17 17 16 16 24 24 14 14 22 22 33 33 19 19 17 17 25 25 14 14 12 12 11 11 17 17
Power input Cooling Nom. kW 28.9 36.5 44.5 57.4 57.2 63.8 65.7 75.1 74.9 75 74.8 82 81.8 88.5 88.2 98 97.7 97.7 97.6 107 106 113 113 122 121 136 136 153 152 176 175 195 195 212 211 228 227
EER 3.04 3.11 3.22 3.11 3.12 2.86 3.05 3.01 3.01 3.18 3.19 3.1 3.11 3.17 3.19 3.1 3.11 3.12 3.12 3.04 3.05 3.1 3.1 3.04 3.05 3.1 3.11 3.07 3.08 3.05 3.06 3.1 3.1 3.11 3.12 3.07 3.08
ESEER 4.07 4.23 4.19 4.3 4.02 4.05 4.01 4.19 4.06 4.23 4.1 4.21 4.03 4.23 4.15 4.32 4.14 4.13 4.18 4.22 4.12 4.25 4.08 4.15 4.03 4.17 4.12 4.2 4.09 4.3 4.06 4.25 4.08 4.33 4.12 4.27 4.05
Dimensions Unit Depth mm 2,660 3,180 3,780 2,326 2,326 3,780 2,326 2,326 2,326 3,226 3,226 3,226 3,226 3,226 3,226 3,226 3,226 3,226 3,226 3,226 3,226 4,126 4,126 4,126 4,126 4,126 4,126 5,025 5,025 5,025 5,025 5,874 5,874 6,774 6,774 6,774 6,774
    Height mm 1,801 1,801 1,822 2,540 2,540 1,822 2,540 2,540 2,540 2,540 2,540 2,540 2,540 2,540 2,540 2,540 2,540 2,540 2,540 2,540 2,540 2,540 2,540 2,540 2,540 2,540 2,540 2,540 2,540 2,540 2,540 2,540 2,540 2,540 2,540 2,540 2,540
    Width mm 1,204 1,204 1,204 2,236 2,236 1,204 2,236 2,236 2,236 2,236 2,236 2,236 2,236 2,236 2,236 2,236 2,236 2,236 2,236 2,236 2,236 2,236 2,236 2,236 2,236 2,236 2,236 2,236 2,236 2,236 2,236 2,236 2,236 2,236 2,236 2,236 2,236
Weight Operation weight kg 752 846 968 1,743 1,743 1,088 1,773 1,801 1,801 1,997 1,997 2,066 2,066 2,209 2,209 2,234 2,234 2,241 2,241 2,277 2,277 2,614 2,614 2,655 2,655 2,848 2,848 3,268 3,268 3,497 3,497 3,916 3,916 4,290 4,290 4,432 4,432
  Unit kg 744 837 961 1,732 1,732 1,072 1,763 1,790 1,790 1,977 1,977 2,054 2,054 2,192 2,192 2,212 2,212 2,220 2,220 2,247 2,247 2,590 2,590 2,627 2,627 2,811 2,811 3,237 3,237 3,458 3,458 3,873 3,873 4,248 4,248 4,396 4,396
Water heat exchanger Type   Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate Brazed plate
  Water volume l 5 6 9 11 11 12 11 11 11 16 16 14 14 19 19 20 20 19 19 19 19 20 20 20 20 28 28 28 28 42 42 42 42 50 50 50 50
Air heat exchanger Type   Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel Microchannel
Fan Air flow rate Nom. l/s 9,036 12,023 15,057 20,306 20,306 15,057 20,306 20,306 20,306 25,382 25,382 25,382 25,382 30,459 30,459 30,459 30,459 30,459 30,459 30,459 30,459 35,535 35,535 35,535 35,535 40,612 40,612 45,688 45,688 50,765 50,765 60,918 60,918 65,994 65,994 71,071 71,071
  Speed rpm 1,360 1,360 1,360 900 900 1,360 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900 900
Compressor Quantity   2 2 2 4 4 2 4 4 4 2 2 4 4 4 4 3 3 4 4 4 4 3 3 4 4 4 4 4 4 5 5 6 6 6 6 6 6
  Type   Driven vapour compression Driven vapour compression Driven vapour compression Driven vapour compression Driven vapour compression Driven vapour compression Driven vapour compression Driven vapour compression Driven vapour compression Driven vapour compression Driven vapour compression Driven vapour compression Driven vapour compression Driven vapour compression Driven vapour compression Driven vapour compression Driven vapour compression Driven vapour compression Driven vapour compression Driven vapour compression Driven vapour compression Driven vapour compression Driven vapour compression Driven vapour compression Driven vapour compression Driven vapour compression Driven vapour compression Driven vapour compression Driven vapour compression Driven vapour compression Driven vapour compression Driven vapour compression Driven vapour compression Driven vapour compression Driven vapour compression Driven vapour compression Driven vapour compression
Operation range Air side Cooling Max. °CDB             46 46           46       46 46                                    
      Min. °CDB             -18 -18           -18       -18 -18                                    
  Water side Cooling Max. °CDB             20 20           20       20 20                                    
      Min. °CDB             -13 -13           -13       -13 -13                                    
Sound power level Cooling Nom. dBA 85.2 87.1 88.5 90.6 90.6 89.3 90.6 90.7 90.7 91.8 91.8 91.7 91.7 92.5 92.5 92.6 92.6 92.5 92.5 92.6 92.6 93.3 93.3 93.2 93.2 93.8 93.8 94.4 94.4 94.8 94.8 95.6 95.6 95.9 95.9 96.3 96.3
Sound pressure level Cooling Nom. dBA 67.5 69.1 70.1 71.6 71.6 70.9 71.7 71.7 71.7 72.3 72.3 72.2 72.2 73 73 73.1 73.1 73 73 73.1 73.1 73.3 73.3 73.3 73.3 73.9 73.9 74 74 74.4 74.4 74.8 74.8 74.8 74.8 75.2 75.2
Refrigerant Type   R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32 R-32
  GWP   675 675 675 675 675 675 675 675 675 675 675 675 675 675 675 675 675 675 675 675 675 675 675 675 675 675 675 675 675 675 675 675 675 675 675 675 675
  Circuits Quantity   1 1 1 2 2 1 2 2 2 1 1 2 2 2 2 1 1 2 2 2 2 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2
  Charge kg 10.5 12.5 15 30 30 16 36 37 37 30 30 42 42 48 48 36 36 50 50 52 52 50 50 58 58 62 62 70 70 78 78 80 80 92 92 100 100
Power supply Phase   3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~
  Frequency Hz 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50
  Voltage V 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400 400
Compressor Starting method   Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line Direct on line
Notes (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0 (1) - All the performances (Cooling capacity, unit power input in cooling and EER) are based on the following conditions: evaporator 12.0/7.0°C; ambient 35.0°C, unit at full load operation, operating fluid: water, fouling factor = 0
  (2) - In accordance with standard EN14825:2013 comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) No 2016/2281 (2) - In accordance with standard EN14825:2013 comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) No 2016/2281 (2) - In accordance with standard EN14825:2013 comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) No 2016/2281 In accordance with standard EN14825:2013 comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) No 2016/2281 (2) - In accordance with standard EN14825:2013 comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) No 2016/2281 (2) - In accordance with standard EN14825:2013 comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) No 2016/2281 In accordance with standard EN14825:2013 comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) No 2016/2281 In accordance with standard EN14825:2013 comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) No 2016/2281 (2) - In accordance with standard EN14825:2013 comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) No 2016/2281 In accordance with standard EN14825:2013 comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) No 2016/2281 (2) - In accordance with standard EN14825:2013 comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) No 2016/2281 In accordance with standard EN14825:2013 comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) No 2016/2281 (2) - In accordance with standard EN14825:2013 comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) No 2016/2281 In accordance with standard EN14825:2013 comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) No 2016/2281 (2) - In accordance with standard EN14825:2013 comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) No 2016/2281 In accordance with standard EN14825:2013 comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) No 2016/2281 (2) - In accordance with standard EN14825:2013 comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) No 2016/2281 In accordance with standard EN14825:2013 comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) No 2016/2281 In accordance with standard EN14825:2013 comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) No 2016/2281 In accordance with standard EN14825:2013 comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) No 2016/2281 (2) - In accordance with standard EN14825:2013 comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) No 2016/2281 In accordance with standard EN14825:2013 comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) No 2016/2281 (2) - In accordance with standard EN14825:2013 comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) No 2016/2281 In accordance with standard EN14825:2013 comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) No 2016/2281 (2) - In accordance with standard EN14825:2013 comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) No 2016/2281 In accordance with standard EN14825:2013 comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) No 2016/2281 (2) - In accordance with standard EN14825:2013 comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) No 2016/2281 In accordance with standard EN14825:2013 comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) No 2016/2281 (2) - In accordance with standard EN14825:2013 comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) No 2016/2281 In accordance with standard EN14825:2013 comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) No 2016/2281 (2) - In accordance with standard EN14825:2013 comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) No 2016/2281 In accordance with standard EN14825:2013 comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) No 2016/2281 (2) - In accordance with standard EN14825:2013 comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) No 2016/2281 In accordance with standard EN14825:2013 comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) No 2016/2281 (2) - In accordance with standard EN14825:2013 comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) No 2016/2281 In accordance with standard EN14825:2013 comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) No 2016/2281 (2) - In accordance with standard EN14825:2013 comfort low temperature, average climate, SEER and µs values applicable Ecodesign regulation: (EU) No 2016/2281
  (3) - Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated form sound power level and used for info only, not considered bounding (3) - Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated form sound power level and used for info only, not considered bounding (3) - Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated form sound power level and used for info only, not considered bounding Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated form sound power level and used for info only, not considered bounding (3) - Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated form sound power level and used for info only, not considered bounding (3) - Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated form sound power level and used for info only, not considered bounding Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated form sound power level and used for info only, not considered bounding Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated form sound power level and used for info only, not considered bounding (3) - Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated form sound power level and used for info only, not considered bounding Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated form sound power level and used for info only, not considered bounding (3) - Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated form sound power level and used for info only, not considered bounding Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated form sound power level and used for info only, not considered bounding (3) - Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated form sound power level and used for info only, not considered bounding Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated form sound power level and used for info only, not considered bounding (3) - Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated form sound power level and used for info only, not considered bounding Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated form sound power level and used for info only, not considered bounding (3) - Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated form sound power level and used for info only, not considered bounding Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated form sound power level and used for info only, not considered bounding Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated form sound power level and used for info only, not considered bounding Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated form sound power level and used for info only, not considered bounding (3) - Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated form sound power level and used for info only, not considered bounding Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated form sound power level and used for info only, not considered bounding (3) - Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated form sound power level and used for info only, not considered bounding Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated form sound power level and used for info only, not considered bounding (3) - Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated form sound power level and used for info only, not considered bounding Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated form sound power level and used for info only, not considered bounding (3) - Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated form sound power level and used for info only, not considered bounding Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated form sound power level and used for info only, not considered bounding (3) - Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated form sound power level and used for info only, not considered bounding Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated form sound power level and used for info only, not considered bounding (3) - Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated form sound power level and used for info only, not considered bounding Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated form sound power level and used for info only, not considered bounding (3) - Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated form sound power level and used for info only, not considered bounding Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated form sound power level and used for info only, not considered bounding (3) - Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated form sound power level and used for info only, not considered bounding Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated form sound power level and used for info only, not considered bounding (3) - Sound power (evap. 12/7°C, ambient 35°C full load operation) in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units. Certification refers only to the overall sound power, sound pressure is calculated form sound power level and used for info only, not considered bounding
  (4) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (4) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (4) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition The minimum capacity indicated is referred to unit operating at standard Eurovent condition (4) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition (4) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition The minimum capacity indicated is referred to unit operating at standard Eurovent condition The minimum capacity indicated is referred to unit operating at standard Eurovent condition (4) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition The minimum capacity indicated is referred to unit operating at standard Eurovent condition (4) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition The minimum capacity indicated is referred to unit operating at standard Eurovent condition (4) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition The minimum capacity indicated is referred to unit operating at standard Eurovent condition (4) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition The minimum capacity indicated is referred to unit operating at standard Eurovent condition (4) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition The minimum capacity indicated is referred to unit operating at standard Eurovent condition The minimum capacity indicated is referred to unit operating at standard Eurovent condition The minimum capacity indicated is referred to unit operating at standard Eurovent condition (4) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition The minimum capacity indicated is referred to unit operating at standard Eurovent condition (4) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition The minimum capacity indicated is referred to unit operating at standard Eurovent condition (4) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition The minimum capacity indicated is referred to unit operating at standard Eurovent condition (4) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition The minimum capacity indicated is referred to unit operating at standard Eurovent condition (4) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition The minimum capacity indicated is referred to unit operating at standard Eurovent condition (4) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition The minimum capacity indicated is referred to unit operating at standard Eurovent condition (4) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition The minimum capacity indicated is referred to unit operating at standard Eurovent condition (4) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition The minimum capacity indicated is referred to unit operating at standard Eurovent condition (4) - The minimum capacity indicated is referred to unit operating at standard Eurovent condition
  (5) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (5) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (5) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (5) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (5) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (5) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (5) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (5) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (5) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (5) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (5) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (5) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (5) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (5) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (5) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (5) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (5) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (5) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request. (5) - Dimensions and weights are for indication only and are not considered binding. Before designing the installation, consult the official drawings available from the factory on request.
  (6) - All data refers to the standard unit without options. (6) - All data refers to the standard unit without options. (6) - All data refers to the standard unit without options. All data refers to the standard unit without options. (6) - All data refers to the standard unit without options. (6) - All data refers to the standard unit without options. All data refers to the standard unit without options. All data refers to the standard unit without options. (6) - All data refers to the standard unit without options. All data refers to the standard unit without options. (6) - All data refers to the standard unit without options. All data refers to the standard unit without options. (6) - All data refers to the standard unit without options. All data refers to the standard unit without options. (6) - All data refers to the standard unit without options. All data refers to the standard unit without options. (6) - All data refers to the standard unit without options. All data refers to the standard unit without options. All data refers to the standard unit without options. All data refers to the standard unit without options. (6) - All data refers to the standard unit without options. All data refers to the standard unit without options. (6) - All data refers to the standard unit without options. All data refers to the standard unit without options. (6) - All data refers to the standard unit without options. All data refers to the standard unit without options. (6) - All data refers to the standard unit without options. All data refers to the standard unit without options. (6) - All data refers to the standard unit without options. All data refers to the standard unit without options. (6) - All data refers to the standard unit without options. All data refers to the standard unit without options. (6) - All data refers to the standard unit without options. All data refers to the standard unit without options. (6) - All data refers to the standard unit without options. All data refers to the standard unit without options. (6) - All data refers to the standard unit without options.
  (7) - All data are subject to change without notice. Please refer to the unit nameplate data. (7) - All data are subject to change without notice. Please refer to the unit nameplate data. (7) - All data are subject to change without notice. Please refer to the unit nameplate data. All data are subject to change without notice. Please refer to the unit nameplate data. (7) - All data are subject to change without notice. Please refer to the unit nameplate data. (7) - All data are subject to change without notice. Please refer to the unit nameplate data. All data are subject to change without notice. Please refer to the unit nameplate data. All data are subject to change without notice. Please refer to the unit nameplate data. (7) - All data are subject to change without notice. Please refer to the unit nameplate data. All data are subject to change without notice. Please refer to the unit nameplate data. (7) - All data are subject to change without notice. Please refer to the unit nameplate data. All data are subject to change without notice. Please refer to the unit nameplate data. (7) - All data are subject to change without notice. Please refer to the unit nameplate data. All data are subject to change without notice. Please refer to the unit nameplate data. (7) - All data are subject to change without notice. Please refer to the unit nameplate data. All data are subject to change without notice. Please refer to the unit nameplate data. (7) - All data are subject to change without notice. Please refer to the unit nameplate data. All data are subject to change without notice. Please refer to the unit nameplate data. All data are subject to change without notice. Please refer to the unit nameplate data. All data are subject to change without notice. Please refer to the unit nameplate data. (7) - All data are subject to change without notice. Please refer to the unit nameplate data. All data are subject to change without notice. Please refer to the unit nameplate data. (7) - All data are subject to change without notice. Please refer to the unit nameplate data. All data are subject to change without notice. Please refer to the unit nameplate data. (7) - All data are subject to change without notice. Please refer to the unit nameplate data. All data are subject to change without notice. Please refer to the unit nameplate data. (7) - All data are subject to change without notice. Please refer to the unit nameplate data. All data are subject to change without notice. Please refer to the unit nameplate data. (7) - All data are subject to change without notice. Please refer to the unit nameplate data. All data are subject to change without notice. Please refer to the unit nameplate data. (7) - All data are subject to change without notice. Please refer to the unit nameplate data. All data are subject to change without notice. Please refer to the unit nameplate data. (7) - All data are subject to change without notice. Please refer to the unit nameplate data. All data are subject to change without notice. Please refer to the unit nameplate data. (7) - All data are subject to change without notice. Please refer to the unit nameplate data. All data are subject to change without notice. Please refer to the unit nameplate data. (7) - All data are subject to change without notice. Please refer to the unit nameplate data.
  (8) - The value refers to the pressure drop in the evaporator only (8) - The value refers to the pressure drop in the evaporator only (8) - The value refers to the pressure drop in the evaporator only The value refers to the pressure drop in the evaporator only (8) - The value refers to the pressure drop in the evaporator only (8) - The value refers to the pressure drop in the evaporator only The value refers to the pressure drop in the evaporator only The value refers to the pressure drop in the evaporator only (8) - The value refers to the pressure drop in the evaporator only The value refers to the pressure drop in the evaporator only (8) - The value refers to the pressure drop in the evaporator only The value refers to the pressure drop in the evaporator only (8) - The value refers to the pressure drop in the evaporator only The value refers to the pressure drop in the evaporator only (8) - The value refers to the pressure drop in the evaporator only The value refers to the pressure drop in the evaporator only (8) - The value refers to the pressure drop in the evaporator only The value refers to the pressure drop in the evaporator only The value refers to the pressure drop in the evaporator only The value refers to the pressure drop in the evaporator only (8) - The value refers to the pressure drop in the evaporator only The value refers to the pressure drop in the evaporator only (8) - The value refers to the pressure drop in the evaporator only The value refers to the pressure drop in the evaporator only (8) - The value refers to the pressure drop in the evaporator only The value refers to the pressure drop in the evaporator only (8) - The value refers to the pressure drop in the evaporator only The value refers to the pressure drop in the evaporator only (8) - The value refers to the pressure drop in the evaporator only The value refers to the pressure drop in the evaporator only (8) - The value refers to the pressure drop in the evaporator only The value refers to the pressure drop in the evaporator only (8) - The value refers to the pressure drop in the evaporator only The value refers to the pressure drop in the evaporator only (8) - The value refers to the pressure drop in the evaporator only The value refers to the pressure drop in the evaporator only (8) - The value refers to the pressure drop in the evaporator only
  (9) - Option FANMOD consist in Continuous Fan Speed Regulation and improves part load operation. Single-V units are standardly equipped with continuous fan control, Multi-V units require opt 99 - VFD fans (9) - Option FANMOD consist in Continuous Fan Speed Regulation and improves part load operation. Single-V units are standardly equipped with continuous fan control, Multi-V units require opt 99 - VFD fans (9) - Option FANMOD consist in Continuous Fan Speed Regulation and improves part load operation. Single-V units are standardly equipped with continuous fan control, Multi-V units require opt 99 - VFD fans Option FANMOD consist in Continuous Fan Speed Regulation and improves part load operation. Single-V units are standardly equipped with continuous fan control, Multi-V units require opt 99 - VFD fans (9) - Option FANMOD consist in Continuous Fan Speed Regulation and improves part load operation. Single-V units are standardly equipped with continuous fan control, Multi-V units require opt 99 - VFD fans (9) - Option FANMOD consist in Continuous Fan Speed Regulation and improves part load operation. Single-V units are standardly equipped with continuous fan control, Multi-V units require opt 99 - VFD fans Option FANMOD consist in Continuous Fan Speed Regulation and improves part load operation. Single-V units are standardly equipped with continuous fan control, Multi-V units require opt 99 - VFD fans Option FANMOD consist in Continuous Fan Speed Regulation and improves part load operation. Single-V units are standardly equipped with continuous fan control, Multi-V units require opt 99 - VFD fans (9) - Option FANMOD consist in Continuous Fan Speed Regulation and improves part load operation. Single-V units are standardly equipped with continuous fan control, Multi-V units require opt 99 - VFD fans Option FANMOD consist in Continuous Fan Speed Regulation and improves part load operation. Single-V units are standardly equipped with continuous fan control, Multi-V units require opt 99 - VFD fans (9) - Option FANMOD consist in Continuous Fan Speed Regulation and improves part load operation. Single-V units are standardly equipped with continuous fan control, Multi-V units require opt 99 - VFD fans Option FANMOD consist in Continuous Fan Speed Regulation and improves part load operation. Single-V units are standardly equipped with continuous fan control, Multi-V units require opt 99 - VFD fans (9) - Option FANMOD consist in Continuous Fan Speed Regulation and improves part load operation. Single-V units are standardly equipped with continuous fan control, Multi-V units require opt 99 - VFD fans Option FANMOD consist in Continuous Fan Speed Regulation and improves part load operation. Single-V units are standardly equipped with continuous fan control, Multi-V units require opt 99 - VFD fans (9) - Option FANMOD consist in Continuous Fan Speed Regulation and improves part load operation. Single-V units are standardly equipped with continuous fan control, Multi-V units require opt 99 - VFD fans Option FANMOD consist in Continuous Fan Speed Regulation and improves part load operation. Single-V units are standardly equipped with continuous fan control, Multi-V units require opt 99 - VFD fans (9) - Option FANMOD consist in Continuous Fan Speed Regulation and improves part load operation. Single-V units are standardly equipped with continuous fan control, Multi-V units require opt 99 - VFD fans Option FANMOD consist in Continuous Fan Speed Regulation and improves part load operation. Single-V units are standardly equipped with continuous fan control, Multi-V units require opt 99 - VFD fans Option FANMOD consist in Continuous Fan Speed Regulation and improves part load operation. Single-V units are standardly equipped with continuous fan control, Multi-V units require opt 99 - VFD fans Option FANMOD consist in Continuous Fan Speed Regulation and improves part load operation. Single-V units are standardly equipped with continuous fan control, Multi-V units require opt 99 - VFD fans (9) - Option FANMOD consist in Continuous Fan Speed Regulation and improves part load operation. Single-V units are standardly equipped with continuous fan control, Multi-V units require opt 99 - VFD fans Option FANMOD consist in Continuous Fan Speed Regulation and improves part load operation. Single-V units are standardly equipped with continuous fan control, Multi-V units require opt 99 - VFD fans (9) - Option FANMOD consist in Continuous Fan Speed Regulation and improves part load operation. Single-V units are standardly equipped with continuous fan control, Multi-V units require opt 99 - VFD fans Option FANMOD consist in Continuous Fan Speed Regulation and improves part load operation. Single-V units are standardly equipped with continuous fan control, Multi-V units require opt 99 - VFD fans (9) - Option FANMOD consist in Continuous Fan Speed Regulation and improves part load operation. Single-V units are standardly equipped with continuous fan control, Multi-V units require opt 99 - VFD fans Option FANMOD consist in Continuous Fan Speed Regulation and improves part load operation. Single-V units are standardly equipped with continuous fan control, Multi-V units require opt 99 - VFD fans (9) - Option FANMOD consist in Continuous Fan Speed Regulation and improves part load operation. Single-V units are standardly equipped with continuous fan control, Multi-V units require opt 99 - VFD fans Option FANMOD consist in Continuous Fan Speed Regulation and improves part load operation. Single-V units are standardly equipped with continuous fan control, Multi-V units require opt 99 - VFD fans (9) - Option FANMOD consist in Continuous Fan Speed Regulation and improves part load operation. Single-V units are standardly equipped with continuous fan control, Multi-V units require opt 99 - VFD fans Option FANMOD consist in Continuous Fan Speed Regulation and improves part load operation. Single-V units are standardly equipped with continuous fan control, Multi-V units require opt 99 - VFD fans (9) - Option FANMOD consist in Continuous Fan Speed Regulation and improves part load operation. Single-V units are standardly equipped with continuous fan control, Multi-V units require opt 99 - VFD fans Option FANMOD consist in Continuous Fan Speed Regulation and improves part load operation. Single-V units are standardly equipped with continuous fan control, Multi-V units require opt 99 - VFD fans (9) - Option FANMOD consist in Continuous Fan Speed Regulation and improves part load operation. Single-V units are standardly equipped with continuous fan control, Multi-V units require opt 99 - VFD fans Option FANMOD consist in Continuous Fan Speed Regulation and improves part load operation. Single-V units are standardly equipped with continuous fan control, Multi-V units require opt 99 - VFD fans (9) - Option FANMOD consist in Continuous Fan Speed Regulation and improves part load operation. Single-V units are standardly equipped with continuous fan control, Multi-V units require opt 99 - VFD fans Option FANMOD consist in Continuous Fan Speed Regulation and improves part load operation. Single-V units are standardly equipped with continuous fan control, Multi-V units require opt 99 - VFD fans (9) - Option FANMOD consist in Continuous Fan Speed Regulation and improves part load operation. Single-V units are standardly equipped with continuous fan control, Multi-V units require opt 99 - VFD fans
  (10) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (10) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (10) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (10) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (10) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (10) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (10) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (10) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (10) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (10) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (10) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (10) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (10) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (10) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (10) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (10) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (10) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (10) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (10) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%.
  (11) - In case of inverter driven units, no inrush current at start up is experienced. (11) - In case of inverter driven units, no inrush current at start up is experienced. (11) - In case of inverter driven units, no inrush current at start up is experienced. In case of inverter driven units, no inrush current at start up is experienced. (11) - In case of inverter driven units, no inrush current at start up is experienced. (11) - In case of inverter driven units, no inrush current at start up is experienced. In case of inverter driven units, no inrush current at start up is experienced. In case of inverter driven units, no inrush current at start up is experienced. (11) - In case of inverter driven units, no inrush current at start up is experienced. In case of inverter driven units, no inrush current at start up is experienced. (11) - In case of inverter driven units, no inrush current at start up is experienced. In case of inverter driven units, no inrush current at start up is experienced. (11) - In case of inverter driven units, no inrush current at start up is experienced. In case of inverter driven units, no inrush current at start up is experienced. (11) - In case of inverter driven units, no inrush current at start up is experienced. In case of inverter driven units, no inrush current at start up is experienced. (11) - In case of inverter driven units, no inrush current at start up is experienced. In case of inverter driven units, no inrush current at start up is experienced. In case of inverter driven units, no inrush current at start up is experienced. In case of inverter driven units, no inrush current at start up is experienced. (11) - In case of inverter driven units, no inrush current at start up is experienced. In case of inverter driven units, no inrush current at start up is experienced. (11) - In case of inverter driven units, no inrush current at start up is experienced. In case of inverter driven units, no inrush current at start up is experienced. (11) - In case of inverter driven units, no inrush current at start up is experienced. In case of inverter driven units, no inrush current at start up is experienced. (11) - In case of inverter driven units, no inrush current at start up is experienced. In case of inverter driven units, no inrush current at start up is experienced. (11) - In case of inverter driven units, no inrush current at start up is experienced. In case of inverter driven units, no inrush current at start up is experienced. (11) - In case of inverter driven units, no inrush current at start up is experienced. In case of inverter driven units, no inrush current at start up is experienced. (11) - In case of inverter driven units, no inrush current at start up is experienced. In case of inverter driven units, no inrush current at start up is experienced. (11) - In case of inverter driven units, no inrush current at start up is experienced. In case of inverter driven units, no inrush current at start up is experienced. (11) - In case of inverter driven units, no inrush current at start up is experienced.
  (12) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (12) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (12) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (12) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (12) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (12) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (12) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (12) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (12) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (12) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (12) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (12) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (12) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (12) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (12) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (12) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (12) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (12) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (12) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current.
  (13) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (13) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (13) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (13) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (13) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (13) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (13) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (13) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (13) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (13) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (13) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (13) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (13) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (13) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (13) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (13) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (13) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (13) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (13) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current
  (14) - Maximum unit current for wires sizing is based on minimum allowed voltage. (14) - Maximum unit current for wires sizing is based on minimum allowed voltage. (14) - Maximum unit current for wires sizing is based on minimum allowed voltage. Maximum unit current for wires sizing is based on minimum allowed voltage. (14) - Maximum unit current for wires sizing is based on minimum allowed voltage. (14) - Maximum unit current for wires sizing is based on minimum allowed voltage. Maximum unit current for wires sizing is based on minimum allowed voltage. Maximum unit current for wires sizing is based on minimum allowed voltage. (14) - Maximum unit current for wires sizing is based on minimum allowed voltage. Maximum unit current for wires sizing is based on minimum allowed voltage. (14) - Maximum unit current for wires sizing is based on minimum allowed voltage. Maximum unit current for wires sizing is based on minimum allowed voltage. (14) - Maximum unit current for wires sizing is based on minimum allowed voltage. Maximum unit current for wires sizing is based on minimum allowed voltage. (14) - Maximum unit current for wires sizing is based on minimum allowed voltage. Maximum unit current for wires sizing is based on minimum allowed voltage. (14) - Maximum unit current for wires sizing is based on minimum allowed voltage. Maximum unit current for wires sizing is based on minimum allowed voltage. Maximum unit current for wires sizing is based on minimum allowed voltage. Maximum unit current for wires sizing is based on minimum allowed voltage. (14) - Maximum unit current for wires sizing is based on minimum allowed voltage. Maximum unit current for wires sizing is based on minimum allowed voltage. (14) - Maximum unit current for wires sizing is based on minimum allowed voltage. Maximum unit current for wires sizing is based on minimum allowed voltage. (14) - Maximum unit current for wires sizing is based on minimum allowed voltage. Maximum unit current for wires sizing is based on minimum allowed voltage. (14) - Maximum unit current for wires sizing is based on minimum allowed voltage. Maximum unit current for wires sizing is based on minimum allowed voltage. (14) - Maximum unit current for wires sizing is based on minimum allowed voltage. Maximum unit current for wires sizing is based on minimum allowed voltage. (14) - Maximum unit current for wires sizing is based on minimum allowed voltage. Maximum unit current for wires sizing is based on minimum allowed voltage. (14) - Maximum unit current for wires sizing is based on minimum allowed voltage. Maximum unit current for wires sizing is based on minimum allowed voltage. (14) - Maximum unit current for wires sizing is based on minimum allowed voltage. Maximum unit current for wires sizing is based on minimum allowed voltage. (14) - Maximum unit current for wires sizing is based on minimum allowed voltage.
  (15) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (15) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (15) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (15) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (15) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (15) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (15) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (15) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (15) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (15) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (15) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (15) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (15) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (15) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (15) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (15) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (15) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (15) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1 (15) - Maximum current for wires sizing: (compressors full load ampere + fans current) x 1.1
  (16) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (16) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (16) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (16) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (16) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book For the electrical data of the hydronic kit refer to "Options technical data" part in the data book For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (16) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (16) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (16) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (16) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (16) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book For the electrical data of the hydronic kit refer to "Options technical data" part in the data book For the electrical data of the hydronic kit refer to "Options technical data" part in the data book For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (16) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (16) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (16) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (16) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (16) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (16) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (16) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (16) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book For the electrical data of the hydronic kit refer to "Options technical data" part in the data book (16) - For the electrical data of the hydronic kit refer to "Options technical data" part in the data book