EWAD190TZPS EWAD225TZPS EWAD250TZPS EWAD270TZPS EWAD295TZPS EWAD320TZPS EWAD345TZPS EWAD380TZPS EWAD415TZPS EWAD460TZPS EWAD505TZPS EWAD560TZPS EWAD600TZPS EWAD645TZPS
Cooling capacity Nom. kW 185.3 221.1 247.1 271.2 293.8 316.1 338.6 369.1 417.8 452.5 494.8 554.1 598.4 639.2
  Rated kW 185.3 221.1 247.1 271.2 293.8 316.1 338.6 369.1 417.8 452.5 494.8 554.1 598.4 639.2
Capacity control Method   Variable Variable Variable Variable Variable Variable Variable Variable Variable Variable Variable Variable Variable Variable
  Minimum capacity % 33.3 28.6 33.3 30.8 28.6 26.7 18.2 16.7 15.4 14.3 16.7 15.4 14.3 13.3
Power input Cooling Nom. kW 52.65 64.87 69.24 77.4 85.11 94.4 101.5 109.8 123.5 133.6 146.4 167.9 182.6 199.9
EER 3.519 3.409 3.569 3.504 3.452 3.348 3.336 3.362 3.384 3.388 3.38 3.301 3.277 3.197
ESEER 5.49 5.45 5.73 5.66 5.65 5.62 5.46 5.4 5.59 5.54 5.67 5.66 5.55 5.47
IPLV 6.95 6.7 7.22 7.04 7.08 6.81 6.85 6.94 7.05 6.98 7.14 7.13 7.1 6.97
SEER 5.2 5.4 5.5 5.6 5.6 5.5 5.3 5.4 5.5 5.6 5.6 5.7 5.7 5.7
Dimensions Unit Depth mm 3,218 3,218 4,117 4,117 4,117 4,117 4,117 5,015 5,015 5,917 5,917 5,917 6,817 6,817
    Height mm 2,222 2,222 2,222 2,222 2,222 2,222 2,222 2,222 2,222 2,222 2,222 2,222 2,222 2,222
    Width mm 2,258 2,258 2,258 2,258 2,258 2,258 2,258 2,258 2,258 2,258 2,258 2,258 2,258 2,258
Weight Operation weight kg 2,536 2,591 2,962 2,967 3,076 3,080 4,460 4,687 5,034 5,277 5,511 5,524 5,744 5,838
  Unit kg 2,436 2,565 2,810 2,815 3,026 3,031 4,290 4,517 4,764 5,007 5,241 5,269 5,489 5,591
Casing Colour   Ivory white Ivory white Ivory white Ivory white Ivory white Ivory white Ivory white Ivory white Ivory white Ivory white Ivory white Ivory white Ivory white Ivory white
  Material   Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet Galvanized and painted steel sheet
Water heat exchanger Type   Plate heat exchanger Plate heat exchanger Plate heat exchanger Plate heat exchanger Plate heat exchanger Plate heat exchanger Shell and tube Shell and tube Shell and tube Shell and tube Shell and tube Shell and tube Shell and tube Shell and tube
  Water flow rate Cooling Nom. l/s 8.9 10.6 11.8 13 14 15.1 16.2 17.7 20 21.6 23.7 26.5 28.7 30.6
  Water pressure drop Cooling Nom. kPa 19.8 22.5 17.5 19.9 18.4 20.6 34 40.5 30.1 34.8 25.9 38.5 44.3 49.9
  Water volume l 23.5 26.1 38.8 38.8 49.5 49.5 170 170 270 270 270 255 255 255
  Insulation material   Closed cell Closed cell Closed cell Closed cell Closed cell Closed cell Closed cell Closed cell Closed cell Closed cell Closed cell Closed cell Closed cell Closed cell
Air heat exchanger Type   High efficiency fin and tube type High efficiency fin and tube type High efficiency fin and tube type High efficiency fin and tube type High efficiency fin and tube type High efficiency fin and tube type High efficiency fin and tube type High efficiency fin and tube type High efficiency fin and tube type High efficiency fin and tube type High efficiency fin and tube type High efficiency fin and tube type High efficiency fin and tube type High efficiency fin and tube type
Heat exchanger Indoor side   water water water water water water water water water water water water water water
  Outdoor side   Air Air Air Air Air Air Air Air Air Air Air Air Air Air
Fan Quantity   6 6 8 8 8 8 8 10 10 12 12 12 14 14
  Type   Direct propeller Direct propeller Direct propeller Direct propeller Direct propeller Direct propeller Direct propeller Direct propeller Direct propeller Direct propeller Direct propeller Direct propeller Direct propeller Direct propeller
  Air flow rate Nom. l/s 20,172 19,284 26,896 26,896 25,712 25,712 25,712 33,621 32,140 40,345 38,568 38,568 47,069 44,996
    Cooling Rated m³/h 72,619 69,422 96,826 96,826 92,563 92,563 92,563 121,036 115,704 145,242 138,845 138,845 169,448 161,986
  Diameter mm 800 800 800 800 800 800 800 800 800 800 800 800 800 800
  Speed rpm 600 600 600 600 600 600 600 600 600 600 600 600 600 600
Fan motor Drive   Brushless Brushless Brushless Brushless Brushless Brushless Brushless Brushless Brushless Brushless Brushless Brushless Brushless Brushless
  Input Cooling W 2,220 2,220 2,960 2,960 2,960 2,960 2,960 3,700 3,700 4,440 4,440 4,440 5,180 5,180
Compressor Quantity   1 1 1 1 1 1 2 2 2 2 2 2 2 2
  Type   Driven vapour compression Driven vapour compression Driven vapour compression Driven vapour compression Driven vapour compression Driven vapour compression Driven vapour compression Driven vapour compression Driven vapour compression Driven vapour compression Driven vapour compression Driven vapour compression Driven vapour compression Driven vapour compression
  Driver   Electric motor Electric motor Electric motor Electric motor Electric motor Electric motor Electric motor Electric motor Electric motor Electric motor Electric motor Electric motor Electric motor Electric motor
  Oil Charged volume l 13 13 13 13 13 13 26 26 26 26 26 26 26 26
Operation range Air side Cooling Max. °CDB 51 51 51 51 51 51 51 51 51 51 51 51 51 51
      Min. °CDB -18 -18 -18 -18 -18 -18 -18 -18 -18 -18 -18 -18 -18 -18
  Water side Cooling Max. °CDB 15 15 15 15 15 15 15 15 15 15 15 15 15 15
      Min. °CDB -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8
Sound power level Cooling Nom. dBA 96.0 96.0 96.0 96.0 97.0 97.0 99.0 99.0 99.0 99.0 99.0 99.0 100.0 100.0
Sound pressure level Cooling Nom. dBA 77.0 77.0 76.0 76.0 77.0 77.0 79.0 79.0 79.0 79.0 78.0 79.0 79.0 79.0
Refrigerant Type   R-134a R-134a R-134a R-134a R-134a R-134a R-134a R-134a R-134a R-134a R-134a R-134a R-134a R-134a
  GWP   1,430 1,430 1,430 1,430 1,430 1,430 1,430 1,430 1,430 1,430 1,430 1,430 1,430 1,430
  Circuits Quantity   1 1 1 1 1 1 2 2 2 2 2 2 2 2
  Charge kg 32 38 42 46 50 54 58 63 71 77 84 94 102 109
Charge Per circuit kgCO2Eq 45,760 54,340 60,060 65,780 71,500 77,220 41,470 45,045 50,765 55,055 60,060 67,210 72,930 77,935
  Per circuit TCO2Eq 45.8 54.3 60.1 65.8 71.5 77.2 41.5 45 50.8 55.1 60.1 67.2 72.9 77.9
Piping connections Evaporator water inlet/outlet (OD)   88.9mm 88.9mm 88.9mm 88.9mm 88.9mm 88.9mm 139.7mm 139.7mm 168.3mm 168.3mm 168.3mm 168.3mm 168.3mm 168.3mm
Space cooling A Condition 35°C Pdc kW 185.3 221.1 247.1 271.2 219.8 218.6 207.8 211.4 217.4 220.6 494.8 554.1 598.4 639.2
    EERd   3.5 3.4 3.6 3.5 293.8 316.1 338.6 369.1 417.8 452.5 3.4 3.3 3.3 3.2
  B Condition 30°C Pdc kW 137.0 164.0 183.0 200.6 3.5 3.4 3.3 3.4 3.4 3.4 366.4 410.4 444.6 475.1
    EERd   4.4 4.3 4.5 4.4 215.7 233.4 251.4 273.4 309.4 336.0 4.6 4.5 4.5 4.5
  C Condition 25°C Pdc kW 86.8 104.0 116.0 127.2 4.3 4.1 4.5 4.5 4.5 4.5 232.8 260.9 282.6 302.0
    EERd   6.2 6.4 6.5 6.6 136.7 147.9 159.8 173.8 196.6 213.5 6.8 6.9 6.9 6.9
  D Condition 20°C Pdc kW 39.0 46.7 52.1 57.1 6.6 6.6 6.5 6.6 6.7 6.8 104.1 116.5 126.3 134.9
    EERd   8.1 8.7 8.4 8.7 61.4 66.4 71.5 77.7 87.8 95.4 8.9 8.9 9.1 9.1
  ηs,c % 205.0 211.0 217.4 219.0 5.6 5.5 5.3 5.4 5.5 5.6 222.2 224.2 225.8 225.8
General Supplier/Manufacturer details Name and address   Daikin Applied Europe - Via Piani di S.Maria 72, 00040 Ariccia (Roma), Italy Daikin Applied Europe - Via Piani di S.Maria 72, 00040 Ariccia (Roma), Italy Daikin Applied Europe - Via Piani di S.Maria 72, 00040 Ariccia (Roma), Italy Daikin Applied Europe - Via Piani di S.Maria 72, 00040 Ariccia (Roma), Italy Daikin Applied Europe - Via Piani di S.Maria 72, 00040 Ariccia (Roma), Italy Daikin Applied Europe - Via Piani di S.Maria 72, 00040 Ariccia (Roma), Italy Daikin Applied Europe - Via Piani di S.Maria 72, 00040 Ariccia (Roma), Italy Daikin Applied Europe - Via Piani di S.Maria 72, 00040 Ariccia (Roma), Italy Daikin Applied Europe - Via Piani di S.Maria 72, 00040 Ariccia (Roma), Italy Daikin Applied Europe - Via Piani di S.Maria 72, 00040 Ariccia (Roma), Italy Daikin Applied Europe - Via Piani di S.Maria 72, 00040 Ariccia (Roma), Italy Daikin Applied Europe - Via Piani di S.Maria 72, 00040 Ariccia (Roma), Italy Daikin Applied Europe - Via Piani di S.Maria 72, 00040 Ariccia (Roma), Italy Daikin Applied Europe - Via Piani di S.Maria 72, 00040 Ariccia (Roma), Italy
LW(A) Sound power level (according to EN14825) dB(A) 96.0 96.0 96.0 96.0 97.0 97.0 99.0 99.0 99.0 99.0 99.0 99.0 100.0 100.0
Cooling Cdc (Degradation cooling)   0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9
Standard rating conditions used Low temperature application Low temperature application Low temperature application Low temperature application Low temperature application Low temperature application Low temperature application Low temperature application Low temperature application Low temperature application Low temperature application Low temperature application Low temperature application Low temperature application
Power consumption in other than active mode Crankcase heater mode PCK W 0.120 0.120 0.120 0.120 0.160 0.160 0.300 0.310 0.420 0.420 0.250 0.250 0.250 0.250
  Off mode POFF W 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
  Standby mode Cooling PSB W 0.050 0.050 0.050 0.050 0.120 0.120 0.250 0.250 0.250 0.250 0.100 0.100 0.100 0.100
  Thermostat-off mode PTO Cooling W 0.140 0.160 0.160 0.160 0.160 0.160 0.300 0.310 0.420 0.420 0.310 0.460 0.460 0.460
Power supply Phase   3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~
  Frequency Hz 50 50 50 50 50 50 50 50 50 50 50 50 50 50
  Voltage V 400 400 400 400 400 400 400 400 400 400 400 400 400 400
  Voltage range Min. % -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10
    Max. % 10 10 10 10 10 10 10 10 10 10 10 10 10 10
Unit Starting current Max A 3 3 3 3 3 3 3 3 3 3 3 3 3 3
  Running current Cooling Nom. A 87 105 113 125 137 153 168 180 201 215 238 269 290 321
    Max A 115 135 151 164 177 193 209 230 249 271 299 325 352 384
  Max unit current for wires sizing A 126 148 165 177 177 211 228 251 273 296 327 353 354 421
Fans Nominal running current (RLA) A 3 3 5 5 5 5 5 6 6 7 7 7 8 8
Compressor Phase   3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~ 3~
  Voltage V 400 400 400 400 400 400 400 400 400 400 400 400 400 400
  Voltage range Min. % -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -10
    Max. % 10 10 10 10 10 10 10 10 10 10 10 10 10 10
  Maximum running current A 112 132 146 159 172 188 102 112 122 132 146 159 172 188
  Starting method   Inverter Inverter Inverter Inverter Inverter Inverter Inverter Inverter Inverter Inverter Inverter Inverter Inverter Inverter
Compressor 2 Maximum running current A             102 112 122 132 146 159 172 188
Notes (1) - Performance calculations according to EN 14511 (1) - Performance calculations according to EN 14511 (1) - Performance calculations according to EN 14511 (1) - Performance calculations according to EN 14511 (1) - Performance calculations according to EN 14511 (1) - Performance calculations according to EN 14511 (1) - Performance calculations according to EN 14511 (1) - Performance calculations according to EN 14511 (1) - Performance calculations according to EN 14511 (1) - Performance calculations according to EN 14511 (1) - Performance calculations according to EN 14511 (1) - Performance calculations according to EN 14511 (1) - Performance calculations according to EN 14511 (1) - Performance calculations according to EN 14511
  (2) - Sound power level (at standard conditions) is measured in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units (2) - Sound power level (at standard conditions) is measured in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units (2) - Sound power level (at standard conditions) is measured in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units (2) - Sound power level (at standard conditions) is measured in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units (2) - Sound power level (at standard conditions) is measured in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units (2) - Sound power level (at standard conditions) is measured in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units (2) - Sound power level (at standard conditions) is measured in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units (2) - Sound power level (at standard conditions) is measured in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units (2) - Sound power level (at standard conditions) is measured in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units (2) - Sound power level (at standard conditions) is measured in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units (2) - Sound power level (at standard conditions) is measured in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units (2) - Sound power level (at standard conditions) is measured in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units (2) - Sound power level (at standard conditions) is measured in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units (2) - Sound power level (at standard conditions) is measured in accordance with ISO9614 and Eurovent 8/1 for Eurovent certified units
  (3) - Fluid: Water (3) - Fluid: Water (3) - Fluid: Water (3) - Fluid: Water (3) - Fluid: Water (3) - Fluid: Water (3) - Fluid: Water (3) - Fluid: Water (3) - Fluid: Water (3) - Fluid: Water (3) - Fluid: Water (3) - Fluid: Water (3) - Fluid: Water (3) - Fluid: Water
  (4) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (4) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (4) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (4) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (4) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (4) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (4) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (4) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (4) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (4) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (4) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (4) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (4) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%. (4) - Allowed voltage tolerance ± 10%. Voltage unbalance between phases must be within ± 3%.
  (5) - Maximum starting current: unit is inverter driven. No inrush current at start up. Declared value refers to the stand-by current. (5) - Maximum starting current: unit is inverter driven. No inrush current at start up. Declared value refers to the stand-by current. (5) - Maximum starting current: unit is inverter driven. No inrush current at start up. Declared value refers to the stand-by current. (5) - Maximum starting current: unit is inverter driven. No inrush current at start up. Declared value refers to the stand-by current. (5) - Maximum starting current: unit is inverter driven. No inrush current at start up. Declared value refers to the stand-by current. (5) - Maximum starting current: unit is inverter driven. No inrush current at start up. Declared value refers to the stand-by current. (5) - Maximum starting current: unit is inverter driven. No inrush current at start up. Declared value refers to the stand-by current. (5) - Maximum starting current: unit is inverter driven. No inrush current at start up. Declared value refers to the stand-by current. (5) - Maximum starting current: unit is inverter driven. No inrush current at start up. Declared value refers to the stand-by current. (5) - Maximum starting current: unit is inverter driven. No inrush current at start up. Declared value refers to the stand-by current. (5) - Maximum starting current: unit is inverter driven. No inrush current at start up. Declared value refers to the stand-by current. (5) - Maximum starting current: unit is inverter driven. No inrush current at start up. Declared value refers to the stand-by current. (5) - Maximum starting current: unit is inverter driven. No inrush current at start up. Declared value refers to the stand-by current. (5) - Maximum starting current: unit is inverter driven. No inrush current at start up. Declared value refers to the stand-by current.
  (6) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (6) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (6) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (6) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (6) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (6) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (6) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (6) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (6) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (6) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (6) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (6) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (6) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current. (6) - Nominal current in cooling mode: entering evaporator water temp. 12°C; leaving evaporator water temp. 7°C; ambient air temp. 35°C. Compressor + fans current.
  (7) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (7) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (7) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (7) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (7) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (7) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (7) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (7) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (7) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (7) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (7) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (7) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (7) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current (7) - Maximum running current is based on max compressor absorbed current in its envelope and max fans absorbed current
  (8) - Maximum unit current for wires sizing is based on minimum allowed voltage. (8) - Maximum unit current for wires sizing is based on minimum allowed voltage. (8) - Maximum unit current for wires sizing is based on minimum allowed voltage. (8) - Maximum unit current for wires sizing is based on minimum allowed voltage. (8) - Maximum unit current for wires sizing is based on minimum allowed voltage. (8) - Maximum unit current for wires sizing is based on minimum allowed voltage. (8) - Maximum unit current for wires sizing is based on minimum allowed voltage. (8) - Maximum unit current for wires sizing is based on minimum allowed voltage. (8) - Maximum unit current for wires sizing is based on minimum allowed voltage. (8) - Maximum unit current for wires sizing is based on minimum allowed voltage. (8) - Maximum unit current for wires sizing is based on minimum allowed voltage. (8) - Maximum unit current for wires sizing is based on minimum allowed voltage. (8) - Maximum unit current for wires sizing is based on minimum allowed voltage. (8) - Maximum unit current for wires sizing is based on minimum allowed voltage.
  (9) - For more details on the operating limits please refer to the Chiller Selection Software (CSS). (9) - For more details on the operating limits please refer to the Chiller Selection Software (CSS). (9) - For more details on the operating limits please refer to the Chiller Selection Software (CSS). (9) - For more details on the operating limits please refer to the Chiller Selection Software (CSS). (9) - For more details on the operating limits please refer to the Chiller Selection Software (CSS). (9) - For more details on the operating limits please refer to the Chiller Selection Software (CSS). (9) - For more details on the operating limits please refer to the Chiller Selection Software (CSS). (9) - For more details on the operating limits please refer to the Chiller Selection Software (CSS). (9) - For more details on the operating limits please refer to the Chiller Selection Software (CSS). (9) - For more details on the operating limits please refer to the Chiller Selection Software (CSS). (9) - For more details on the operating limits please refer to the Chiller Selection Software (CSS). (9) - For more details on the operating limits please refer to the Chiller Selection Software (CSS). (9) - For more details on the operating limits please refer to the Chiller Selection Software (CSS). (9) - For more details on the operating limits please refer to the Chiller Selection Software (CSS).
  (10) - Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. (10) - Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. (10) - Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. (10) - Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. (10) - Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. (10) - Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. (10) - Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. (10) - Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. (10) - Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. (10) - Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. (10) - Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. (10) - Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. (10) - Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels. (10) - Equipment contains fluorinated greenhouse gases. Actual refrigerant charge depends on the final unit construction, details can be found on the unit labels.